
A Programmable
Computer Fan Controller

Liam McSherry

Higher National Diploma in
Electrical Engineering 2018

• PAGE INTENTIONALLY LEFT BLANK •

A Programmable
Computer Fan Controller

by Liam McSherry

Submitted in partial fulfilment of the requirements for a

HIGHER NATIONAL DIPLOMA IN ELECTRICAL ENGINEERING

Supervised by
Martin McLean

Department of Engineering
Edinburgh College

2018

A Programmable Computer Fan Controller

2017–2018 © Liam McSherry

A report, submitted in partial fulfilment of the requirements
for a Higher National Diploma in Electrical Engineering, on
the theory of operation, design, and construction of an
electronic controller for computer fans.

304 pages and approximately 82,100 words.

Set in Pablo Impallari’s Caslon and Franklin.

Printed in Hertfordshire by Mixam UK Ltd.

Liam McSherry 1 of 304
EC1520839

Abstract
This report seeks to determine the theory behind the control of typical computer
fans and apply this in the design and construction of a prototype for an electronic
programmable fan controller, and to then apply the knowledge and observations
gained in doing so to make recommendations for a design for a fan controller
suitable for commercial and volume production.

The types of fan typical in computer systems vary significantly, with the capacity
to receive a control signal or report status information not guaranteed. As such, a
fan controller must employ a number of techniques to control all typical varieties
of fan. This report initially explores three techniques—use of a standard control
signal for those fans which support it, modulation of the fan’s power supply so as
to reduce the average voltage supplied to the fan, and use of a filter arrangement
with modulation so as to reduce the absolute voltage supplied to the fan.

Additionally, this report considers and demonstrates what is necessary to have a
fan controller be capable of receiving instruction from a user through a software
interface on a host computer system—a capacity which, in conjunction with a set
production cost target of £40 per unit and the ability to mount the controller in a
standard computer chassis bay, would be likely to offer an improvement over fan
controllers currently on the market.

This report then makes wide recommendations for a production design based on
the research and the knowledge gained by prototyping. In particular, this report
recommends that a production design use both a standard control signal and the
modulation of the supply to control a fan, that the design be connected to a host
computer using the Universal Serial Bus (USB), and that the design be suitable for
mounting in a standard 5.25" bay of a typical computer chassis.

Acknowledgements
Much of the testing and prototyping done as part of this project was done using
tools, equipment, and workshops at Edinburgh Napier University, and so I extend
my thanks to Jay Hoy for his help and accommodation in making these resources
available, without which it may not have been possible to carry out this project
to the same standard.

2 of 304 Liam McSherry
 EC1520839

Table of Partitions

Requirements Specification . 3

1. Brief

2. Requirements

3. Schedule

Research and Theory . 7

4. Summary of findings

5. Computer fans

6. Pulse width modulation

7. Form factor

8. Power delivery

9. Host–controller interface

10. Preliminary hardware selection

11. Driver stack

12. Control modes

13. Protocol

Design and Implementation . 49

14. Proof-of-concept prototype

15. Ancillary prototypes

16. Production design

Conclusion and Review . 89

17. Critical evaluation

18. References

19. Figures

20. Tables

Table of Appendices

A — Project schedule . 107

B — Progress log . 111

C — Source code . 141

D — Fan controller device class specification . 217

E — Summary of expenditure. 225

F — Proof-of-concept prototype . 227

G — Ancillary prototypes . 285

Liam McSherry 3 of 304
EC1520839

Requirements Specification

Chapter Page

1. Brief . 3

1.1 Context 3

1.2 Aim 3

2. Requirements . 4

2.1 Hardware requirements 4

2.2 Firmware requirements 4

2.3 Software requirements 5

3. Schedule . 5

3.1 Proposed schedule 5

3.2 Actual schedule 6

3.3 Progress log 6

1. Brief

1.1 Context
The primary purpose of a computer fan is to ensure that the components in a
computer system remain within safe temperature ranges, and although doing so
would fulfil that purpose, it is not desirable to constantly operate computer fans
at full speed—the constant high-speed operation could cause unnecessary wear
on the fan, or could produce excessive levels of noise. Therefore, it is desirable
that the speed of a computer fan be controlled to suit dynamic conditions.

1.2 Aim
The aim of the project is to produce a prototype computer fan controller which
is readily convertible, with minimal further work, to a design which is suitable for
commercial and volume production. Included with this prototype must be the
firmware for the controller and the software necessary for the host computer to
interface with and drive the controller.

For the purposes of fulfilling this aim, there are the following objectives:

1.2.1 To develop a product which requires minimal or no in-depth technical
knowledge to use, and which can be used with minimal prior instruction.

1.2.2 To attain the lowest practical per-unit cost without excessive detriment
to quality, reliability, or safety; and in any case to not exceed the per-
unit cost maximum set out in requirement 2.1.8.

1.2.3 To deliver the prototype in line with the proposed schedule.

1.2.4 To develop the prototype at a cost of £600 or less.

1.2.5 To produce, to a high standard, all materials necessary for reproduction

4 of 304 Liam McSherry
 EC1520839

of the prototype; and to include the materials herein.

1.2.6 To produce a robust and, where possible, automated suite of tests for
each aspect (hardware, firmware, and software) of the prototype.

1.2.7 To have regard to the ease of manufacturing of the product, and in doing
so to identify and implement accepted “design for manufacturing”
techniques and practices (DFM).

1.2.8 To identify and comply with all relevant standards and applicable law,
with particular regard to standards and law concerned with health and
safety and electromagnetic compatibility.

2. Requirements
This chapter sets out the requirements for the project. It is divided into three
sections for clarity: hardware, covering the physical controller; firmware, relating
to the software operating the controller hardware; and software, for the software
that executes on the host computer to interface with the controller hardware and
firmware and perform related functions.

2.1 Hardware requirements
The requirements for the fan controller hardware are as follows:

2.1.1 The controller must be able to control the speed of all types of fan
commonly used within computer systems.

2.1.2 The controller must support the control of at least four fans.

2.1.3 The controller must be suitable for mounting in a typical desktop- or
tower-style computer chassis.

2.1.4 The controller must not require the use of a power supply separate from
the primary power supply for the host computer.

2.1.5 The controller must interface with the host computer using standard and
widely-available means or methods.

2.1.6 The controller must have means of acquiring relevant data, such as the
temperature of its environment.

2.1.7 The controller must comply with all applicable health and safety law.

2.1.8 The cost of producing the controller in reasonable commercial volume
should not exceed £40 per unit.

2.2 Firmware requirements
The requirements for the fan controller firmware are as follows:

2.2.1 The firmware must be able to control and (where possible) monitor and
report to the host computer the speed of the fans to which the controller
is connected.

2.2.2 The firmware must be able to interface with any transducers or other
equipment included by virtue of requirement 2.1.6, and process and act
upon the data thereby acquired; and must be able to report the data,

Liam McSherry 5 of 304
EC1520839

before or after its processing (as appropriate), to the host computer.

2.2.3 The firmware must be able to detect the failure of any connected fans,
and must be able to report such failures to the host computer.

2.2.4 The firmware must make such provision necessary to support the means
or method selected to fulfil requirement 2.1.5; and should support the in-
circuit updating of the firmware by that means or method.

2.2.5 The firmware must support the storage of configuration data.

2.2.6 The firmware must support complex configurations, such as mapping
temperature data to fan speed by a user-provided function.

2.3 Software requirements
The requirements for the host computer software are as follows:

2.3.1 The software must be able to display, in real time, the data reported in
fulfilment of requirements 2.2.1 through 2.2.3.

2.3.2 The software must be able to provide configuration data based on user
input to the fan controller, including data for complex configurations.

2.3.3 The software should support the updating of the fan controller firmware.

3. Schedule

3.1 Proposed schedule
The project is anticipated to take 24 weeks to complete, comprising:

■ 7 weeks for fundamental research

The research necessary to produce the design specification. For example,
this would include research into the relevant standards, required hardware
subsystems such as power delivery and controller–host communication, and
the operating system interfaces and systems with which the host computer
software will be required to interact.

■ 10 weeks for hardware, firmware, and software development

The producing of the design specification; the simulation and design of the
hardware; and the development of the firmware and software and test suites
therefor. The prototype hardware must be ready for manufacture by the end
of the first three weeks of this period. Additional development, testing, and
refinement of the firmware and software is done during manufacture.

■ 4 weeks for project evaluation, proofing, editing, etc.

The project is evaluated, any final additions are made to the report, editing
and proofreading which is necessary is done, and the report is printed.

■ 3 weeks for slippage

Additional time allocated to account for unforeseen delays.

The project must be completed on or before 20th April 2018. To be completed
on this date, provided that the proposed schedule is adhered to entirely, the
project must begin no later than 3rd November 2017.

6 of 304 Liam McSherry
 EC1520839

A Gantt chart illustrating the proposed schedule is included in Appendix A1.

3.2 Actual schedule
It is expected that, once the details of each aspect of the project become clearer,
changes to the schedule will need to be made. Appendix A2 details the revisions
made to the proposed schedule throughout the project.

3.3 Progress log
To record the progress made and work undertaken in relation to the project, a
progress log was kept. The completed log is contained in Appendix B.

Liam McSherry 7 of 304
EC1520839

Research and Theory

Chapter Page

4. Summary of findings . 8

4.1 Hardware findings 8

4.2 Firmware findings 9

4.3 Software findings 9

4.4 Standards and law 9

The General Product Safety Regulations 2005 10

The Electrical Equipment (Safety) Regulations 2016 10

The Restriction of the Use of Certain Hazardous Substances
in Electrical and Electronic Equipment Regulations 2012 10

The Electromagnetic Compatibility Regulations 2016 11

The Ecodesign for Energy-Related Products Regulations
2010 11

5. Computer fans . 12

5.1 Types 12

5.2 Construction 12

5.3 Control 13

5.4 Monitoring 14

5.5 Power requirements 15

6. Pulse width modulation. 15

7. Form factor . 16

7.1 Expansion card slots 16

7.2 2.5", 3.5", and 5.25" bays 17

8. Power delivery . 18

8.1 Sources 18

USB power 18

SATA power 19

PCI-E power 19

Selection 21

8.2 Fans 21

Power supply margins 21

Speed control by power delivery 22

8.3 Microcontroller 24

9. Host–controller interface . 24

9.1 PCI and PCI Express 24

9.2 RS-232 25

9.3 Ethernet 26

8 of 304 Liam McSherry
 EC1520839

9.4 USB 27

10. Preliminary hardware selection . 29

10.1 Microcontroller 29

10.2 PWM DAC 30

General filter considerations and selection 31

Snubber selection 33

Control transistor 37

11. Driver stack . 39

11.1 Driver fundamentals and stack selection 39

11.2 Firmware considerations 40

12. Control modes . 40

12.1 Voltage control 40

12.2 Speed control 40

12.3 Temperature point control 41

13. Protocol . 41

13.1 Identification 42

13.2 Communication 44

Modes of communication 44

Control transfer specifics 46

4. Summary of findings
This chapter summarises the findings made during research for the project. More
detailed information is provided in the following chapters, which are referenced
where appropriate in this summary.

4.1 Hardware findings
There were the following findings in relation to the controller hardware:

■ There are four principal types of computer fan, three of which use inter-
compatible variants of the same connector. The fourth type is not common
enough to warrant support (see chapter 5.1).

■ Fans are likely to all use brushless D.C. motors (see chapter 5.2).

■ Fans are controllable by reduction of the voltage supplied to them. In the
case of 2- and 4-pin fans, this can be achieved without impact to torque by
reduction of the average voltage with PWM (see chapter 6). In the case of 3-
pin fans, however, the absolute voltage must be reduced so as not to interfere
with the operation of sensors on the fan motor (see chapters 5.3 and 5.4).

■ Fans take a 12 V input, and can draw up to 18 W continuously (26.4 W during
starting). However, most modern fans have considerably lower power
requirements (see chapter 5.5).

■ The most appropriate form factor for the controller is one derived from that

Liam McSherry 9 of 304
EC1520839

used for 5.25” optical media readers, enabling controller mounting in 5.25”
drive bays provided in most computer chassis (see chapter 7).

■ The most appropriate host–controller interface is USB (see chapter 9).

■ The computer fans are to be supplied through a “2 × 3” PCI Express auxiliary
power connector, and lower-power aspects of the controller from the USB
power connection from the host–controller interface (see chapter 8.1).

■ The majority of fans consume considerably less than the 18 W permitted by
the specification for 4-pin fans, and so the 75 W provided by the auxiliary
power connector should be more than sufficient for four fans. Specifically,
all fans surveyed consumed less than approximately 6.5 W (see chapter 8.2,
in the section on power supply margins).

■ The absolute voltage reduction required for the control of 3-pin fan types
can be attained by use of a so-called “PWM DAC,” where the controller
feeds a PWM signal into a filter, which removes high-frequency components
to produce a largely steady voltage with magnitude proportional to the duty
cycle of the PWM signal (see chapter 8.2).

■ Power delivery to a microcontroller is anticipated to be uncomplicated, and
it is expected that a simple linear regulator will be sufficient (see chapter 8.3).

■ A device in the Silicon Labs EFM32WG family of microcontrollers is to be
used as the processor in the fan controller (see chapter 10.1).

■ For the PWM DAC, the LC filter is to use an inductance of approximately
470 μH and a capacitance of 4.7 μF; the snubber circuit is to use the Nexperia
TDZ12J Zener diode with a current-limiting resistance of at least 1078 ohms;
and the control transistor is to be the Fairchild FDMS7682 (see chapter 10.2).

4.2 Firmware findings
There were the following findings in relation to the controller firmware:

■ The firmware must implement the USB transport protocol (see chapters 10.1
and 13) and the application protocol in Appendix D.

■ In doing so, the firmware must report a specific set of USB descriptors so as
to enable the host computer to load the correct drivers (see chapter 11).

4.3 Software findings
There were the following findings in relation to the host computer software:

■ The device driver should be built on the generic “WinUSB” kernel-mode
driver included with Windows (see chapter 11).

■ The device driver must implement the application protocol in Appendix D.

4.4 Standards and law
The following standards and laws were identified as being relevant:

■ The 4-Wire Pulse Width Modulation (PWM) Controlled Fans Specification,
revision 1.3 (Intel Corporation, 2005a).

10 of 304 Liam McSherry
 EC1520839

■ SFF-8551J — Form Factor of 5.25” CD Drives, revision 3.3 (SFF, 2000).

■ The Universal Serial Bus Specification, revision 2.0 (USB-IF, 2000).

■ The Universal Serial Bus Device Class Specification for Device Firmware
Upgrade, version 1.1 (USB-IF, 2004).

■ The PCI Express® 225 W/300 W High Power Card Electromechanical
Specification, revision 1.0 (PCI-SIG, 2008).

■ The General Product Safety Regulations 2005 (S.I. 2005/1803).

■ The Restriction of the Use of Certain Hazardous Substances in Electrical and
Electronic Equipment Regulations 2012 (S.I. 2012/3032).

■ The Electromagnetic Compatibility Regulations 2016 (S.I. 2016/1091).

The General Product Safety Regulations 2005

Regulation 3 of the General Product Safety Regulations 2005 provides that every
product is subject to the regulations “in so far as there are no specific provisions
with the same objective in rules of [European Union] law” (unless it is covered by
the exemption in regulation 4). While the definition of “product” in regulation 2
would exempt a prototype for a fan controller, any production design would fall
within the definition, and so the regulations would apply to a production design.

Part 2 of the regulations sets out a general requirement for products to be safe,
and more specific requirements for the producer to provide a customer with such
information necessary for the customer to assess and take precautions against the
risks inherent to the product, for the producer to take measures which enable the
producer to be informed about the risks (and take such action necessary to avoid
or mitigate the risks), and for the producer to inform an enforcement authority if
the product “poses risks to the consumer that are incompatible with the general
safety requirement.”

The Electrical Equipment (Safety) Regulations 2016

Although they were identified as potentially relevant, the Electrical Equipment
(Safety) Regulations 2016 (S.I. 2016/1101) were determined to not apply to the fan
controller—the regulations are, per regulation 3 (electrical equipment to which
these regulations apply), applicable only to “electrical equipment designed for
use with a voltage rating of between 50 and 1000 V for alternating current and
between 75 and 1500 V for direct current.”

The Restriction of the Use of Certain Hazardous Substances in Electrical and
Electronic Equipment Regulations 2012

These regulations implement the European Union “RoHS directive” into United
Kingdom law, and—as indicated by the title—restrict the use of certain materials
and substances in electrical and electronic equipment. Under regulation 5 (EEE 1
to which these regulations apply), the restrictions apply only to equipment which
is or was “placed on the market,” and so would not apply to the fan controller.

However, considering requirement 2.1.8 (which sets a target for cost in volume

1 Abbreviation for “electrical and electronic equipment” used in the regulations.

Liam McSherry 11 of 304
EC1520839

production), it would make sense to ensure that any final prototype uses only
parts which comply with the regulations and the RoHS directive.

The Electromagnetic Compatibility Regulations 2016

Under regulation 3 of the Electromagnetic Compatibility Regulations 2016 (but
subject to regulations 3(2) to (4), 4, 5, and 6), the regulations are applicable to “all
equipment.” Fundamentally, the regulations require that equipment not generate
“electromagnetic disturbance […] [exceeding] the level above which radio and
telecommunications equipment or other equipment cannot operate as intended,”
and require that equipment be designed so that it is able to “operate without
unacceptable degradation of its intended use” when subjected to levels of
electromagnetic disturbance “to be expected” in its intended use.

While such requirements would apply to any final design, it is possible that a
prototype design would fall under one of the exemptions in the regulations. For
example, regulation 3(e) exempts “custom built evaluation kits destined for
professionals to be used solely at research and development facilities for such
purposes,” and regulation 5 exempts equipment on “display or demonstration at
a trade fair, exhibition or similar event […] provided that a visible sign clearly
indicates that the equipment” does not comply with the requirements.

In light of this, and again considering requirement 2.1.8, any designs should have
regard to the requirements for electromagnetic compatibility.

The Ecodesign for Energy-Related Products Regulations 2010

These regulations implement the “Ecodesign” directive of the European Union,
require a device to conform to a number of European regulations, and require a
device’s declaration of conformity to state which of the regulations to which the
device conforms (S.I. 2010/2617).

In particular, it was considered that a fan controller may fall within the definition
of “electrical and electronic household and office equipment.” However, per the
definition in article 2 of Commission Regulation (EC) No 1275/2008 (which is
referenced by the 2010 Regulations), a fan controller does not fall within that
definition because it is neither one of the items in the list given in Annex I to the
Commission Regulation, nor is it likely to be “dependent on […] the mains power
source in order to work as intended.”

Despite it not appearing to be the case that a fan controller would be covered by
the regulations, it would not be unreasonable to use the requirements given in
that Commission Regulation—and any other listed by the 2010 Regulations which
appears relevant—as targets. In any case, any design for a fan controller should
have regard to the objectives of the Regulations.

12 of 304 Liam McSherry
 EC1520839

5. Computer fans

5.1 Types
There exist few citable sources of information for the types of computer fan in
common use. The types which exist are largely distinguished by the connector
used. Including with the use of prior knowledge, the following types of fan were
identified:

■ 4-pin (or “PWM”) fans

■ 3-pin fans

■ 2-pin fans

■ ATX Peripheral Power Connector2 (ATX-PPC) fans

Fans of the 4-pin type comply with an open specification (Intel Corporation,
2005a). Although no specification was found for the 2- and 3-pin types, there
does exist documentation from computer motherboard vendors confirming that
3- and 4-pin types use a compatible connector (Intel Corporation, 2013). There
also exists documentation implying, when taken with the aforecited, that the 2-
pin connector type is compatible with 3- and 4-pin types (Intel Corporation,
2007).

ATX-PPC fans are powered using the Peripheral Power Connector described in
the ATX Specification, although the use of the connector for fans is not known to
be required or recommended by any specification.

ATX-PPC fans are sufficiently uncommon to not warrant specific support. In a
search of a number of online retailers to assess commonness, few ATX-PPC fans
were available, and those that were available were generally unbranded or of a
generic brand. While the same is true of 2-pin fans, such fans can be connected
to 3- or 4-pin headers, and so should be supported for completeness. ATX-PPC
fans use an entirely different connector.

5.2 Construction
Manufacturers of computer fans provide little information about the construction
of their fans, and very few provide manuals or datasheets. As such, precise
information on the construction of a typical computer fan is not available and
instead there must be assumptions and best guesses.

In determining the variety of motor used, several varieties can be disregarded
from the outset:

■ Any type of A.C. motor is highly unlikely. A typical computer power supply
only provides a low-voltage D.C. output (Intel Corporation, 2002, p. 19), and
so a fan with an A.C. motor would require an integrated inverter and,
potentially, an integrated transformer3 or boost converter.

2 The ATX Peripheral Power Connector is known colloquially as the “Molex connector.”

3 For clarity, it is considered that an integrated transformer may be required as the highest
D.C. voltage available (12V) is, if taken as the peak voltage of the A.C. waveform, would,
after inversion, produce a very low A.C. voltage of approximately 8.5 V (RMS).

Liam McSherry 13 of 304
EC1520839

■ Any brushed D.C. motor is unlikely, as the motor would require regular
maintenance or replacement as its brushes wore down. In addition, the
conductive carbon dust produced by the brushes wearing down could be
ejected from the fan into the computer chassis, where it would be likely to
land on exposed circuit boards and potentially interfere with their operation.

■ Discounting the previous point, the use of a series-wound motor (including
a universal motor) is unlikely given that the motor speed decreases with load.
The light load of a fan might then cause a series-wound motor to accelerate
past safe operating speed.

It is therefore reasonable to assume that most, if not all, computer fans make use
of brushless D.C. motors (BLDCs). To attempt to confirm this assumption, a list
of computer fans was obtained from an online retailer, and an attempt was made
to locate the datasheets for each of the fans. The list is given in Table 1.

Table 1

Types of motor used in computer fans

Fan Model No. Datasheet Motor Type

ADDA Corp. AD0912US-A70GL Yes (2004) Brushless

Arctic AFACO-080PC-GBA01 No —

Corsair CO-9050059-WW No —

Noctua NF-A20 PWM Yes4 (2017a) Brushless

AKASA AK-191-BL No —

Coolermaster R4-LUS-07AB-GP Yes (2008) Not Specified

In summary, where a datasheet could be located and that datasheet specified the
type of motor in use, no fan was specified as using any type other than “brushless”
or an equivalent.

5.3 Control
For fans of the 4-pin type, the fourth wire is used to transmit a Pulse Width
Modulation (PWM) control signal to the fan (Intel Corporation, 2005a, p. 9). Refer
to chapter 6 for further information on PWM.

No control wire is provided with 2- or 3-pin type fans (Intel Corporation, 2007,
p. 52; 2013). This lack of a control input could cause complication, as the speed
of a brushless D.C. motor (which chapter 5.2 established as being the most likely
choice of motor) is generally controlled by an on-board controller adjusting in
sequence which poles are energised. An alternative method of speed control must
be determined.

Speed control for 2- and 3-pin type fan motors should be possible by modulation
of the supply voltage provided to the motor, as “the speed of the motor can be
controlled if the voltage across the motor is changed.” Through the use of PWM,
the average voltage across the motor can be reduced to give the same reduction

4 Although not expressly stated, the “Smooth Commutation Drive” technology is listed in
the datasheet and it, as marketing material explains, is for brushless motors (Noctua, 2017b).

14 of 304 Liam McSherry
 EC1520839

in speed (Gamazo-Real, et al., 2010, pp. 6902, 6908-6909). Further, unlike if the
absolute voltage were reduced, the use of PWM will not reduce the torque of the
fan motor.5

However, as explained in chapter 5.4, the use of PWM is likely to be unsuitable
for speed control of 3-pin type fans. The same effect must be accomplished by
other means, such as reducing the absolute (rather than average) voltage supplied
to the fan. Reducing the absolute voltage would not be without its downsides,
however, as the reduced absolute voltage would also result in a reduced torque
being produced by the motor. This effect is not present in a PWM-controlled
motor as the full operating voltage is always supplied. As a result of the reduced
torque, a 3-pin type fan would not necessarily support speed control in the 30%
to 100% speed range supported by 4-pin type fans.

5.4 Monitoring
In order to both control a fan and report its status, it is necessary to be able to
monitor its speed. This is especially true if precise speed control is desired, as
fans of the 4-pin type are specified as having their speed correspond, plus or
minus 10%, to the duty cycle of the PWM signal transmitted on the control wire
(Intel Corporation, 2005a, p. 14).

For the 3- and 4-pin type fans, speed monitoring is enabled by a tachometer wire
provided as the third pin. Given that 3-pin types are described as working when
connected to a 4-pin header, it can be taken that both 3- and 4-pin types provide
the same form of output on the tachometer wire. The tachometer wire for these
types of fans provides two pulses for every revolution (Intel Corporation, 2005a,
p. 9; 2013).

However, for 3-pin fan types where no speed control input is present, the use of
PWM on the supply has the potential to interfere with the speed measurement
device. Such devices are typically Hall effect sensors, which rely on a magnet
exerting a force on the current in a current-carrying conductor such that a
measurable voltage proportional to that current and the strength of the magnetic
field is produced at a 90º angle to the direction of current flow (Gamazo-Real, et
al., 2010, p. 6903; Honeywell, n.d., p. 3).

All located documentation regarding Hall effect sensors notes that the sensors
require a constant current, and hence a regulated supply, to give an accurate
output. Figure 1 below illustrates an expectation of the output of a Hall effect
sensor when a switching supply is used.

5 Briefly, the “on” periods of a PWM signal are at the full voltage. Thus, for the periods
where the signal is “on,” full power is delivered. See chapter 6 for further detail on PWM.

Liam McSherry 15 of 304
EC1520839

Figure 1

A comparison of the output of a Hall effect sensor when supplied

with a constant current (A) and the expected output when

supplied from a PWM-modulated supply (B)

If this is the case, and if a sufficiently high switching frequency is used, it may be
possible to use some form of low-pass filter to remove the switching-frequency
noise and recover the basic sensor output desired.

5.5 Power requirements
Fans of the 4-pin type are specified as requiring an input voltage of 12V, within
5%, and are permitted to draw up to 1.5 A during continuous operation. During
starting, it is permitted for the fans to draw up to 2.2 A for one second (Intel
Corporation, 2005a, p. 9). Given the compatibility of 2- and 3-pin types with 4-
pin type fans, it can be taken that those types will largely adhere to the same
requirements and limitations.

6. Pulse width modulation
Pulse width modulation (PWM) is a technique for approximating an analogue
signal by altering the ratio between the time (“width”) a digital signal is on and the
time it is off. By altering that ratio, the average voltage can be reduced to a level
between the digital system’s “off” (generally 0 V) and “on” levels. The ratio is
generally known as the “mark–space ratio,” with each “on” level forming part of
a “mark” and each “off” level forming part of a “space.”

The mark–space ratio is commonly represented as the “duty cycle,” expressed as
the percentage of the period that the signal is “on.” For example, to half the
average voltage of the signal, the mark–space ratio would be 1:1 and the duty
cycle 50%. For a three-quarters average voltage, the ratio would be 3:1 and the
duty cycle 75%.

A PWM waveform is illustrated in Figure 2. The waveform has an 80% duty cycle,
and—as can be seen in the figure—the voltage is at “V+” (or on) for three fifths of
the period T, which is equivalent to 60%. It can also be seen that the voltage is at
“V−” (or off) for two fifths of the period T, and by considering these two fractions
together it can be seen from where the 3:2 mark–space ratio comes.

16 of 304 Liam McSherry
 EC1520839

Figure 2

A PWM waveform at 60% duty cycle, 3:2 mark–space ratio

The PWM frequency must be chosen to ensure that the signal receiver state does
not significantly deteriorate between pulses. For example, to use PWM to dim a
light, the selected PWM frequency must be high enough that the human eye is
unable to perceive the light switching on and off (Giesselmann, et al., 2002).

7. Form factor
In order to fulfil requirement 2.1.3, the controller must be suitable for mounting
in a typical computer chassis. The following locations have been identified:

7.1 The rear expansion card slots, up to seven of which may be provided in a
typical chassis (Intel Corporation, 2002, p. 11).

7.2 The 2.5” bays, often at the front but sometimes on the floor of the chassis.

7.3 The 3.5” bays, typically at the front of the chassis.

7.4 The 5.25” bays, typically at the front of the chassis.

7.1 Expansion card slots
The selection of location 7.1 would generally only be acceptable—in terms of
what is and what is not good practice—if the host–controller interface selected
were PCI or PCI Express. Those interfaces were rejected, and so location 7.1 must
also be rejected. See chapter 9.1 for rationale.

Even if the PCI or PCI Express expansion card slots were selected as the
mounting location, it is possible and likely that there would be other expansion
cards present in the host computer. The number of cables running to the
controller in a PCI or PCI Express slot—at least one for power, one for the host–
controller interface, and four for the four fans—could cause considerable space
issues and impact to airflow inside the host computer chassis.

Liam McSherry 17 of 304
EC1520839

7.2 2.5", 3.5", and 5.25" bays
A list of computer chassis was obtained from an online retailer, and a survey of
the available quantities of 2.5", 3.5", and 5.25" bays was taken. The results are
shown in Table 2.

Table 2

Availability of various sizes of bay in typical computer chassis

Chassis Model No. No. of Bays

2.5" 3.5" 5.25"

Fractal Design FD-CA-CORE-3000-BL 2 3 2

Cooler Master SIL-652-KKN2* 3 + 7 2 + 7 3

Thermaltake CA-1H8-00M1WN-00* 3 3 0

Corsair CC-9011016-WW* 6 6 3

AvP CAS-748 2 4 2

Antec VSK4000B U3 0 5 3

Mean 4 5 2
Std. Deviation 3.6 2.3 1.2

* Has combination 2.5"/3.5" bays, which can be used in either configuration.

From the survey, it can be seen that the most common type of bay is the 3.5" bay.
However, quantity is not the only factor which must be considered. Each type of
bay is generally used with one specific component, and, although no source could
be found for confirmation, prior knowledge and experience indicates:

■ That 5.25" bays are typically used for optical media readers, and occasionally
for memory card readers.

■ That 3.5" bays are used for almost all hard disk drives.

■ That 2.5" bays are used for a majority of solid-state drives, although some
solid-state drives use motherboard-mounted connectors and some hard disk
drives are available in the 2.5” form factor.

It can be reasoned that a user is likely to have fewer available 3.5" bays than 5.25"
bays—digital media is increasingly delivered online and on-demand rather than
by optical media, and so the demand (and therefore need) for optical media
readers is decreasing (Morris, 2016; Sweney, 2017). It can be further reasoned that
as digital delivery increases, so too will the need for storage space, and so the
availability of 2.5" and 3.5" bays could decrease further as users add to the storage
capacity of their computers.

This is especially important considering the deviation in the number of bays. In
the survey, the chassis were consistent in the number of 5.25" bays provided. The
surveyed chassis were relatively consistent in the number of 3.5" bays, but were
not greatly consistent in the number of 2.5" bays provided. If the number of bays
is not consistent, then the confidence with which it can be assumed that a user
will have a bay of that type available is decreased.

18 of 304 Liam McSherry
 EC1520839

Taking this into consideration, the controller must be of a form factor which can
be mounted in a typical 5.25" bay.

The 5.25" device form factor was previously developed by the Small Form Factor
Committee (SFF), now the Storage Networking Industry Association (SNIA)’s SFF
Technology Affiliate Technical Working Group (SFF TA TWG). Various revisions
of the SFF specification have been standardised in the Electronic Components
Industry Association’s EIA-741 standard, but this report will design to the latest
version of the specification published by the SFF. For the greatest compatibility,
the standard for 5.25" CD drives will be used (SFF, 2000).

8. Power delivery

8.1 Sources
It can be reasonably expected that any desktop- or tower-style computer will
include a power supply. It can also be reasonably expected that any such power
supply will, minimally, provide the power connectors referenced by the ATX
specification,6 as many computer motherboards use the form factor (as evidenced
by all computer motherboards given in Table 5 using ATX or an ATX-derived form
factor).

However, neither the ATX specification nor the ATX12V specification7 (Intel
Corporation, 2005b) provide any minimum power requirement. While this makes
sense and is reasonable—many types of computer exist with vastly different
power requirements—its effect is that all work of selecting an appropriate power
supply is delegated to the user of the controller, who must then account for the
power usage of the remainder of the computer system, the power usage of each
fan connected to the controller, and the capabilities of each power rail provided
by the user’s power supply.

Use of standard ATX power connectors and supplies is, therefore, not ideal. The
following power connectors were identified as providing a standard minimum
amount of power:

■ USB

■ SATA

■ PCI-E

USB power

As established in chapter 9.4, the USB interface of a computer (which is available
in the internals of the computer) can provide power. However, USB 2.0 is limited
to providing 5 V and 500 mA (2.5 W), which is neither sufficient voltage nor
sufficient current to power a single fan. USB 3.1 can provide 5 V and 900 mA
(4.5 W), but this is still not sufficient for a single fan. It could be possible to use

6 ATX is the most common computer motherboard form factor. The ATX specification
describes the required motherboard sizes, shapes, and mounting hole placements, among
other requirements. All computer motherboards listed in Table 5 use the ATX (or an ATX-
derived) form factor.
7 The ATX12V specification provides supplementary information for power supplies
compliant with the ATX specification.

Liam McSherry 19 of 304
EC1520839

supply from the USB connection providing the host–controller interface for the
low-power subsystems on the controller.

SATA power

Serial ATA (SATA) is one, and probably the most prevalent, of the standards for
connecting storage devices to computers. The SATA standard specifies two types
of connector—data and power—for connecting storage devices, with two primary
designs for each.8 The SATA power connector is specified as being rated for up
to 1.5 A per conductor, and provides three 12 V conductors, three 5 V conductors,
and three 3.3 V conductors, and so would be able to power three computer fans
directly from its 12 V supply (albeit with no margin if a fan were to draw the
maximum permissible current).

To supply the fourth fan required by requirement 2.1.2, it would likely be possible
to use a boost converter powered from one of the lower-voltage sets of
conductors to produce an appropriate 12 V source (SATA-IO, 2009, pp. 67, 82,
95).

However, two issues were identified with the use of the SATA power connector.
First, for sufficient margin on the power supplied to the computer fans, it would
be necessary to either have two power connectors or a high-rated boost converter
which could provide sufficient power for a fourth fan and the overhead for all
four fans; and secondly, no manufacturer could be found which produced a
power-only receptacle, and so each connector on the controller would include a
non-functional SATA data connector.

PCI-E power

Although PCI-E was rejected as a host–controller interface (see chapter 9.1), the
power connectors specified to be used with PCI-E devices remain an option for
sourcing power, as there is no requirement that a device powered from a PCI-E
power connector be a PCI-E device.

The PCI-E specification defines two auxiliary power connectors: the “2 × 3”
connector (up to 75 W) and the “2 × 4” connector (up to 150 W), both of which
provide this power at 12 V (PCI-SIG, 2008). It would be possible to use either
connector to power the fans connected to the controller: if the 2 × 3 connector
were used, the USB power available via the host–controller interface connection
could be used to power other components on the controller, and if the 2 × 4
connector were used the power it supplies could be used to power the entirety of
the controller’s components. A survey of typical power supplies sold by an online
retailer was taken to determine the availability of the types of auxiliary power
connectors (Table 3).

8 The remaining designs are generally for smaller storage devices, such as those using the
1.8” form factor, or for storage devices external to the host computer (SATA-IO, 2009, pp.
111, 120, 138, 147).

20 of 304 Liam McSherry
 EC1520839

Table 3

Availability of PCI-E auxiliary power connectors on typical

computer power supplies

Power Supply Model No. Rating No. of Connectors

2 × 3 2 × 4

Corsair CP-9020095-UK* 350 W 0 1

Antec VP350P 350 W 1 0

be quiet! BN240* 400 W 0 2

Seasonic SS-430ST* 430 W 0 1

Corsair CP-9020101-UK* 450 W 0 1

EVGA 100-W1-0500-K3 500 W 1 0

be quiet! BN277* 500 W 0 2

EVGA 220-G3-0550-Y3* 550 W 0 3

Corsair CP-9020076-UK* 550 W 0 2

Antec EDG550* 550 W 0 2

be quiet! BN278* 600 W 0 4

Corsair CP-9020122-UK* 650 W 0 2

EVGA 210-GQ-0750-V3* 750 W 0 6

be quiet! BN237* 800 W 0 4

Seasonic SSR-850TD* 850 W 0 6

Corsair CP-9020037-UK* 860 W 0 8

EVGA 220-G3-1000-X3* 1000 W 0 8

be quiet! BN254* 1000 W 1 8

Corsair CP-9020008-UK* 1200 W 0 8

Corsair CP-9020057-UK* 1500 W 0 10

* Uses combination “6+2-pin” PCI-E auxiliary power connectors.

It can be seen that, as rated power increases, so too does the number of available
PCI-E auxiliary power connectors. Especially outside of the relatively low end of
power ratings (300–450 W), most power supplies have multiple available power
connectors. It would therefore be reasonable to assume that most systems will
have at least one additional PCI-E power connector available, especially at the
higher end as PCI-E add-in cards rated at 225–300 W are specified as being able
to use no more than two auxiliary power connectors (PCI-SIG, 2008, p. 16).

For the best compatibility, the controller would use the 2 × 3 auxiliary power
connector. While this would prevent use with any power supply which provides
only 2 × 4 power connectors (PCI-SIG, 2008, p. 22), all power supplies surveyed
which provided a 2 × 4 connector provided a combination “6+2-pin” connector.

The 6+2-pin connector is a modified variant of the 2 × 4 connector which has a

Liam McSherry 21 of 304
EC1520839

removable 2-pin segment. When the segment is present, the connector can be
inserted into a 2 × 4 receptacle. When the segment is removed, the connector
becomes compatible with the receptacle for the 2 × 3 connector. Unfortunately,
as the 6+2-pin connector is a de facto standard, there could not be identified a
suitable source to cite to confirm this compatibility.

Selection

The controller, for the reasons outlined, will use a PCI-E 2 × 3 auxiliary power
connector as the 12 V source to power the attached fans, and the USB connection
that is the host–controller interface for a 5 V source to supply the lower-power
components.

8.2 Fans

Power supply margins

A compliant fan is permitted to draw 1.5 A continuously and up to 2.2 A during
starting. Requirement 2.1.2 specifies that the controller must support four fans,
and this would appear to leave little safety margin—four fans would be permitted
to draw 6 A continuously and 8.8 A if all started at once. However, in reality, a
modern fan will draw considerably less than the maximum permitted. A survey of
fans sold by an online retailer was taken to confirm this (Table 4).

Table 4

Continuous-operation current draw for typical computer fans

Fan Model No. Speed Current

Cooler Master R4-LUS-07AR-GP 700 rpm 0.160 A

Aerocool 4713105951615 1000 rpm 0.200 A

Bitfenix BFF-SCF-12025KK-RP 1000 rpm 0.100 A

Fractal Design FD-FAN-DYN-GP12-WT 1200 rpm 0.180 A

Thermaltake CL-F038-PL12RE-A 1500 rpm 0.200 A

Noctua NF-A14 PWM 1500 rpm 0.130 A

Noctua NF-F12 PWM 1500 rpm 0.050 A

Noctua NF-B9 REDUX PWM 1600 rpm 0.080 A

Phanteks PH-F120MP 1800 rpm 0.200 A

be quiet! BL051 2000 rpm 0.100 A

Cooler Master R4-JFDP-20PW-R1 2000 rpm 0.400 A

Corsair CO-9050013-WW 2350 rpm 0.180 A

EKWB 3831109880036 3000 rpm 0.470 A

Noctua NF-A4x10 FLX 4500 rpm 0.050 A

Mean 0.179 A

Std. Deviation 0.122 A

Max. 0.470 A

Mean Amps/1000 rpm 0.113 A

22 of 304 Liam McSherry
 EC1520839

As shown by this data, it is unlikely that a modern fan operating normally will
come close to the maximum permitted current draw. Even the mean plus three
standard deviations (0.545 A) is well within the capability of the power supply and
still provides a large margin of safety.

Further, assuming the mean current per 1000 rpm figure holds true, there would
need to be connected a fan that rotated at approximately 13,300 rpm. While such
fans do exist, the current per 1000 rpm figure does not hold true for those fans
and use of those fans would still provide an acceptable margin of safety. For
example:

■ The NMB-MAT 1611RL-04W-B60-X00 (15,000 rpm) draws 0.36 A.

■ The Delta THA0412 (19,000 rpm) draws 0.89 A.

■ The Sanyo Denki 9GX3612P3K001 (24,000 rpm) draws 1.30 A.

However, these fans are not intended for use as computer fans, as evidenced by
the lack of the standard computer fan connector and their control wires having
differing functions; and as further evidenced by another Sanyo Denki fan in the
same series far exceeding the permitted maximum current draw for computer
fans—the Sanyo Denki 9HVA0812P1G001 (16,100 rpm) is rated to draw 3.5 A.

Speed control by power delivery

As discussed in chapter 5.3, fans of the 2- and 3-pin types do not provide a wire
for control, and so the power supply voltage delivered to the fan must be reduced
to reduce the speed. However, as noted in chapter 5.4, simply using the a PWM
signal (see chapter 6) to switch on the power supply wire could interfere with
instrumentation on the fan leading to the reporting of an inaccurate speed.

Potential methods for filtering the PWM output to produce a smooth waveform
were investigated, and all potential methods investigated were based on the same
concept—that a PWM signal would be filtered to produce an absolute voltage
approximately equal to its average voltage—with the main difference being in
how this was used to deliver power.

A so-called “PWM DAC” (pulse width modulation digital-to-analogue converter)
is a circuit generally found in systems where an integrated DAC is unavailable and
high-resolution output is not required. Given a PWM generator, a PWM DAC can
be implemented with relatively inexpensive components, such as a resistor and
capacitor forming a low-pass RC filter.

The first potential method involved using the output of the PWM DAC to drive a
bipolar junction transistor (BJT) in the common collector configuration. A BJT in
this configuration acts as a voltage buffer, with voltage gain near unity. The
emitter voltage of the BJT is equal to the base voltage (i.e. the DAC output) minus
the forward voltage (generally 0.6–0.7 V for silicon transistors). However, this
method results in high losses in the transistor, with the power dissipated in the
transistor PD being IC × VCE—that is, the product of the collector current and the
voltage between the collector and emitter. Hence, at 6 V base voltage and full
operating current for a fan (1.5 A), the transistor could dissipate 9 W of power as
heat (Horowitz & Hill, 1989, p. 65–69). During starting, before any filter in the
PWM DAC has had sufficient time to stabilise, the base voltage may be near-zero,

Liam McSherry 23 of 304
EC1520839

meaning that nearly the full supply voltage is dropped on the transistor. This,
coupled with the fan starting current of 2.2 A, means that the transistor could
potentially dissipate more than 26 W, plus any further power loss from the base
current. This method is therefore not viable.

The second potential method did away with a transistor acting as a voltage buffer
and instead used the PWM DAC directly to drive the fan. If an RC (resistor–
capacitor) filter were used, the resistance could be lowered and the capacitance
increased to ensure that the cut-off frequency remained the same. The power
dissipation would then be only the ohmic heating in the resistor and capacitor
P=I²R. While capacitors rated in the millifarad range—the anticipated range for
this method—are relatively costly, a low aggregate resistance on the order of 400
milliohms would then result in a worst-case power dissipation (at the starting
current 2.2 A) of 2 W. The downside to this method is that the capacitor charging
current would be only limited by that aggregate resistance. At 400 milliohms, this
could result in 30 A being drawn—far above the level the power supply is rated to
supply. While there do exist components to limit the inrush current, they are not
inexpensive—one solution from Texas Instruments (the TPS2420) cost more than
£2 in single quantities.

There are other methods of mitigating inrush current—for example, by adding an
inductor to make an LC filter, not only can the capacitance in the filter be
reduced (which will reduce inrush current), but the inductor’s opposition to
changes in current will damp any spike in current demand.

Figure 3

A generic MOSFET-controlled PWM DAC based on an LC filter

However, simulation of such a circuit revealed that, if the PWM DAC were
operated at 100% duty cycle, the voltage across a load (in the simulation,
represented by a 4-ohm resistor) would spike above the rated maximum (12.6 V)
of a fan to 16 V during starting. Whether this method is viable, then, depends on
whether this voltage can be snubbed so that it remains within acceptable bounds.

The circuit shown in Figure 3 was simulated, and, in that simulation, increasing
the inductance in the LC filter reduced the voltage spike considerably—from
16.8 V (at 1 mH) to 12.2 V (at 8 mH). At 10 mH, there was no discernible spike and
the voltage across the load was within millivolts of the 12 V target. There is likely

24 of 304 Liam McSherry
 EC1520839

to be some variation with real components, but it is expected that any variation
would be downwards.

In this circuit, the diode is necessary to prevent damage to the circuit—if it were
not present and the MOSFET was switched off, the inductor would resist the
sudden change in current and continually increase its voltage in an attempt to
retain an unbroken circuit. This high voltage could damage the transistor and
other components, but with the diode in place a path is provided for current to
circulate, and the inductor will be continually charging and discharging until its
energy is dissipated.

Discussion on the selection of components for the PWM DAC can be found in
chapter 10.2.

8.3 Microcontroller
The power delivery system for any microcontroller is uncomplicated. The USB
connection that is the host–controller interface (see chapter 9) can provide up to
500 mA at 5 V, which is likely to be sufficient for any microcontroller that could
be selected.

Where a microcontroller cannot accept a 5 V supply voltage, the level of power
in the circuit is slight enough that a linear regulator—that is, a regulator which
uses a varying resistance to drop the voltage required to produce the desired
output (and so is heated by resistive heating per Joule’s law P=I²R)—is acceptable
as a solution.

Available current may be somewhat limited if more than the controller and its
ancillary components are to be supplied from the USB 5 V supply. However, it is
not anticipated that this will be the case.

9. Host–controller interface
In order to be easily programmable, the controller must interface with the host
computer and must be able to receive instructions from that computer. There are
numerous interfaces in use in a typical computer system, and the following have
been identified as potential choices:

■ PCI or PCI Express

■ RS-232

■ Ethernet

■ USB

From these potential choices, USB has been identified as the most appropriate.
The following sections provide the rationale for this decision.

9.1 PCI and PCI Express
The PCI and PCI Express (PCI-E) buses would, on first consideration, appear
ideal interfaces for the controller. They provide sufficient power (up to 300W), a
standardised slot in which the controller could be mounted, and a high-speed
communications interface to the host computer.

However, modern computer motherboards seldom include PCI slots. When PCI

Liam McSherry 25 of 304
EC1520839

slots are included, generally few are included, reducing the likelihood that one
slot might be free. In a survey of computer motherboards sold by an online
retailer (Table 5), PCI slots were so scarce as to be effectively unavailable.

Table 5

PCI and PCI Express availability on computer motherboards

Motherboard Model No. No. of Slots

PCI PCI-E

Gigabyte GA-H110-D3A 0 6

MSI Z270-A-PRO 0 6

Asus 90MB0PB0-M0EAY0 2 4

Asus PRIME X370-PRO 0 7

ASRock AB350M-HDV 0 2

Gigabyte EBR1-GA-AB350-GAMING 3 0 5

Biostar X370GT5 2 4

However, as can be seen, most of the computer motherboards surveyed included
a number of PCI-E slots. In terms of availability, then, PCI-E is a viable option.
The same is not true of PCI-E when the technical requirements are taken into
consideration. The bus uses a 100 MHz reference clock, which is relatively high
frequency in and of itself, and transfers data on 2.5GHz, 5GHz, or 8GHz channels
(PCI-SIG, 2010, pp. 354, 401). It is unlikely that any microcontroller appropriate
for the controller would support the bus, and, even if a microcontroller with
support for the bus were available, specialist design knowledge and equipment
would be required to implement and test the bus.

Disregarding the technical limitations, producing a PCI or PCI-E device requires
the assignment of a Vendor Identifier (Vendor ID) by the PCI Special Interest
Group (PCI-SIG), and to be assigned a Vendor ID a person or organisation must
join PCI-SIG at a cost of $4000 per year (PCI-SIG, 2010, p. 588; 2017). Use of PCI
or PCI-E is therefore impractical financially as well as technically.

9.2 RS-232
The use of RS-232 would be ideal for the controller—the interface is simple,
operates at low speeds, and can be implemented either using the extremely
common universal asynchronous receiver–transmitter (UART) hardware of a
microcontroller or, if no UART hardware is available, with software running on
the microcontroller and “bit-banging” (i.e. reading and setting the microcontroller
input and output states, using software, in the way a dedicated transceiver would).

However, presence of connectors suitable for RS-232 on modern computers is
limited, as the interface is largely obsolete outside of embedded and industrial
applications. Using the same computer motherboards identified in Table 5, the

26 of 304 Liam McSherry
 EC1520839

availability of a suitable connector for RS-232 was assessed (Table 6).9

Table 6

Availability of RS-232 connectors on computer motherboards

Motherboard Model No. No. of RS-232 Ports

DB-25 DE-9

Gigabyte GA-H110-D3A 0 1

MSI Z270-A-PRO* 0 0

Asus 90MB0PB0-M0EAY0 0 0

Asus PRIME X370-PRO 0 0

ASRock AB350M-HDV 0 0

Gigabyte EBR1-GA-AB350-GAMING 3 0 0

Biostar X370GT5* 0 0

* Includes a non-standard serial connector.

As can be seen, connectors suitable for use with RS-232 are effectively extinct in
modern computer motherboards. In the one case where a standard connector
was included, that connector was in the “back panel I/O” area and so would have
been external to the host computer, requiring a cable leading from inside the host
computer—where the controller is to be mounted—to outside of the computer,
where the connector would be located.

RS-232 is therefore not a suitable choice of host–controller interface.

9.3 Ethernet
The use of Ethernet for control applications is common, and numerous industrial
applications and specifications for Ethernet exist—EtherNet/IP, PROFINET, and
Sercos III, for example, each use Ethernet and work with a typical network stack
as would be found on a consumer-grade computer (Lin & Pearson, 2013).

No technical limitations preventing the use of Ethernet have been identified. The
Ethernet specification allows for a wide range of signalling rates—from 16 MHz
to 1000 MHz depending on the precise variant and data rate—and uses standard
connectors and cable constructions (IEEE, 2015, pp. 77–78, 82, 401–402). Indeed,
microcontrollers with integrated Ethernet hardware exist and are commercially
available (such as the Microchip/Atmel AT32UC3A). There may be time-related
issues if new software must be written to provide support for the Internet
Protocol (which is used on most networks), but given the ubiquity of Ethernet and
the Internet Protocol it is expected that such software already exists.

The limitations preventing the use of Ethernet are practical. An industrial
computer is unlikely to be used for the same purposes as a consumer computer,

9 A suitable connector is one of the either the DB-25 or DE-9 connectors. The EIA RS-232
standard specified up to 25 circuits for communication and 13 interfaces, where some of
the circuits were omitted. It is also permitted for additional connections to be defined by
mutual agreement (EIA, 1969, pp. 7–9, 21–22). The DE-9 connector was used by the IBM
PC AT, but did not use any circuit configuration (“interface”) defined in EIA RS-232.

Liam McSherry 27 of 304
EC1520839

and so there is no scarcity of Ethernet connections on an industrial computer.
The user of a consumer computer, however, likely requires (or desires) use of the
Internet, and so would be required to either have two available Ethernet ports
(one for a connection to a router or network switch, one for a connection to the
controller), or would be required to connect the controller (mounted inside the
host computer) to a router or network switch.

Making further use of the computer motherboards from Table 5, a survey of the
number of Ethernet ports available on a typical computer motherboard was made
(Table 7). The survey demonstrated that most motherboards have only a single
Ethernet port, indicating the first case is impractical.

Table 7

Availability of Ethernet ports on computer motherboards

Motherboard Model No. No. of Ethernet ports

Gigabyte GA-H110-D3A 1

MSI Z270-A-PRO 1

Asus 90MB0PB0-M0EAY0 1

Asus PRIME X370-PRO 1

ASRock AB350M-HDV 1

Gigabyte EBR1-GA-AB350-GAMING 3 1

Biostar X370GT5 1

The second case—connecting the controller to a router or network switch—is
undesirable for other reasons. Doing so could enable, intentionally or otherwise,
communication with the controller over the Internet, and so the controller would
be required to implement authentication to prevent a malicious actor from
making remote changes to the configuration of the controller or exploiting any
errors or vulnerabilities in the controller’s firmware. This would not only impact
the experience of a user, but would result in significantly more work in producing
the controller.

Therefore, Ethernet is not a suitable host–controller interface.

9.4 USB
Universal Serial Bus (USB), as an interface, has a combination of the advantages
of the previously-considered interfaces—it has low-speed operating modes that
do not require specialist knowledge or tools, it is ubiquitous (Table 8), it has no
dedicated use (e.g. as a network connection) which could bring unintended side
effects, and it can provide power (USB-IF, 2000, pp. 1, 17, 171; 2013, pp. 9-9, 11-1).

28 of 304 Liam McSherry
 EC1520839

Table 8

Availability of USB ports on computer motherboards

Motherboard Model No. No. of USB Ports

USB 1.1
& 2.0

USB 3.1
(Gen. 1)

USB 3.1
(Gen. 2)

Gigabyte GA-H110-D3A 2 + 4 2 + 2 0 + 0

MSI Z270-A-PRO 2 + 4 4 + 4 0 + 0

Asus 90MB0PB0-M0EAY0 2 + 4 4 + 2 2 + 0

Asus PRIME X370-PRO 0 + 4 4 + 5 2 + 0

ASRock AB350M-HDV 2 + 2 4 + 1 0 + 0

Gigabyte EBR1-GA-AB350-GAMING 3 1 + 4 0 + 2 2 + 0

Biostar X370GT5 0 + 2 4 + 2 2 + 0

Mean 1 + 3 3 + 3 1 + 0

Note: Ports are given as external ports + internal headers. External ports are located on the
back I/O panel of the computer and are standard USB ports, while internal headers are
located on the motherboard are generally do not use standard USB ports.

The information in Table 8, taken with the backwards compatibility of USB 3.1
with USB 2.0, allows a USB device adhering to the USB 2.0 specification to be
used in practically any computer with USB capability. The use of USB 2.0 is well
within capability—such devices inherit the USB 1.0/1.1 “Low Speed” (1.5 Mbps)
and “Full Speed” (12 Mbps) modes, which are sufficiently low speed that “bit-
banging” is possible, if likely not advisable.

Further, USB has the advantage of “device classes,” which are standardised and
generic specifications for types (or classes) of device. Any software designed to
operate with a device class will, provided the device is compliant, be capable of
operating any device of that class. In particular, the “Device Firmware Upgrade”
(DFU) class provides a standardised method of updating the firmware on a USB
device over a USB connection (USB-IF, 2004). This has the following advantages:

■ In fulfilling requirements 2.2.4 and 2.3.3, the standardised nature of DFU
means that there likely already exists firmware and software which could be
incorporated or used as a reference, potentially reducing development time.

■ A user could, if that user so desired, use software other than that produced
for the controller to update the controller’s firmware.

USB also, and unlike RS-232 and Ethernet, has a standardised header for internal
connections (Intel Corporation, 2005c, p. 27–29), and so there would be no need
for external cables to connect the controller to the host computer.

There is a similar disadvantage with using USB as there is with using PCI or PCI-E,
in that a USB devices requires a Vendor ID to function, and a Vendor ID can,
ostensibly, only be obtained by paying a $4000 annual membership fee to the
USB Implementers’ Forum, or by making a one-time payment of $5000 for the
Vendor ID without membership (USB-IF, 2000, pp. 261-263; 2013, pp. 9-35–9-
38; n.d.). However, this is not an issue in reality—numerous USB-IF members

Liam McSherry 29 of 304
EC1520839

sublicense the Vendor ID they are assigned, and so a Vendor ID and Product ID
could thereby be obtained for free. The following sublicensors were identified:

9.4.1 John Otander (2015)

9.4.2 OpenMoko, Inc. (2017)

9.4.3 FTDI Ltd. (2010)

9.4.4 Silicon Labs (2017c)

9.4.5 Microchip (2017)

9.4.6 NXP (2017a)

9.4.7 Texas Instruments (n.d.)

Each of the sublicensors imposes restrictions on who may apply to sublicense
their Vendor ID. Sublicensors 9.4.1 and 9.4.2 generally require that the applicant
apply only in relation to open-source projects, while sublicensors 9.4.3 to 9.4.7
require the use of their products, or license the Vendor ID up to a maximum
number of produced units. It is not foreseen that there will be any difficulty in
meeting requirements relating to open-sourcing the project.

For these reasons, USB is selected as the host–controller interface.

10. Preliminary hardware selection
The choice of components for use in the construction of the fan controller is a
concern for the design specification, but for the primary system components it is
necessary to provide the rationale behind the selection of that component. This
chapter provides that rationale.

10.1 Microcontroller
The choice of controller affects the design of numerous parts of the system—the
design of the firmware components (including the programming language with
which the firmware is written) could change radically; the voltage tolerances of
the controller could change whether a regulator is required for power, and if a
level shifter is required for all fan interfacing; and the buses and interfaces the
controller supports could change the choice of sensors and other devices.

In selecting an appropriate controller, there are the following primary criteria:

■ The controller should support USB 2.0, whether at Low Speed (1.5 Mbps) or
Full Speed (12 Mbps).

■ The controller should have at least four PWM generators, although if timers
are available it would be possible to use software to produce a PWM output.
If PWM generators are present, they should ideally support multiple
channels—that is, support adjusting the output pin through which the PWM
signal is transmitted—and a variable PWM frequency.

■ The controller should be inexpensive, and should have an inexpensive
development kit to enable firmware and software to be written before any
hardware design is sent for manufacturing.

30 of 304 Liam McSherry
 EC1520839

■ The footprint of the controller should be practical. While integrated circuits
in extremely small footprints are available, larger footprints are often more
practical—a larger spacing between the controller pins reduces the effect an
error in manufacturing a circuit board could have, and requires less
expensive capabilities from the fabricator; and small footprints with pins
underneath the controller (such as BGA10) can require specialist examination
techniques (including x-ray imaging) to verify correct assembly.

■ Considering the limit of 0.5 A supplied from the USB connection, the
controller should be of a low-power variety.

In the interests of saving cost and time, the controller selected is a controller from
the Silicon Labs EFM32 “Wonder Gecko” family. While perhaps not the most
economical option, controllers from the EFM32WG family fulfil the criteria set
out above, are inexpensive, and a development kit for the family was already to
hand. In particular, all devices in the family provide four timers (with no less than
11 PWM outputs), three pulse counters, at least three USARTs11 which support the
SPI bus, two I²C buses, at least 32 kB of RAM, and at least 64 kB of non-volatile
flash storage. All devices support five power modes, designated EM0 (full
functionality, current draw from 10.8 mA) through EM4 (“shutoff mode” with all
but interrupts and resets disabled, 20 nA minimum current draw), which fulfils
the low-power criterion.

Many parts in the family provide USB 2.0 support, and those that do support both
Low and Full Speed varieties. Parts with USB support also include an integrated
5 V-to-3.3 V regulator which can provide up to 50 mA (Silicon Labs, 2014a, p. 241).

The controllers use an ARM Cortex-M4F microcontroller core.

The development kit to hand—the Silicon Labs EFM32WG-STK3800—includes
a higher-end device in the EFM32WG family. This mitigates the risk of, part way
through development, discovering that a selected lower-end device is not suitable
for this application. Development can take place on a higher-end device and,
once all requirements are known with certainty, a compatible lower-end device
can be selected for volume production. In producing a prototype, it is largely
immaterial whether a higher-end device or the selected lower-end device is used
(Silicon Labs, 2013d, p. 2; 2014a, pp. 8–11, 240–243).

10.2 PWM DAC
As established in chapter 8.2, each computer fan is permitted to continuously
draw 1.5 A with peaks of up to 2.2 A with a supply voltage not exceeding 12.6 V.
Any components in the PWM DAC, then, must be rated—at the absolute
minimum—to withstand at least these currents and voltages. For safety, any
components should be rated to tolerate currents and voltages at least 50% greater
than these minimums.

As further established in that chapter, it is possible for the voltage across the load
to spike on starting, and so the inductance must be chosen to ensure that any

10 Ball Grid Array (BGA) — an arrangement of pins on an integrated circuit (or a “land
pattern”) where the die is mounted on a small circuit board and that circuit board has a grid
arrangement of balls of solder on its underside (IPC, 1999, § 14).
11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART).

Liam McSherry 31 of 304
EC1520839

spike remains within the rated limits for the components, if it cannot be entirely
eliminated. Experimentation by simulation revealed that by increasing the
inductance (in this case, from 1 to 10 mH) for a fixed load, the spike was reduced
such that it was largely indiscernible.

There are a number of components which must be selected for use in the PWM
DAC—a capacitor, an inductor, a flyback diode, and a transistor. If desired, it may
also be necessary to select the relevant transducers for monitoring the output of
the DAC for both control—ensuring the correct voltage is across the load—and
for safety—ensuring that the current draw does not exceed the safe level for the
power supply in use.

General filter considerations and selection

The selection of the capacitor and inductor is dependent on the desired
characteristics of the filter. In particular, they must be selected to ensure that the
cut-off frequency of the filter is such that the signal is sufficiently conditioned
and that high-frequency noise does not impact the circuit’s operation. At the very
least, the cut-off frequency must be lower than the first harmonic—the PWM
frequency—or there will be significant ripple on the output (Nisarga, 2011, p. 9).

Figure 4

Fourier analysis of a 100 kHz PWM signal at 50% (top) and

75% (bottom) duty cycles

To better understand the signal and to aid in selecting a cut-off frequency for the
filter, the simulation tool was used to perform Fourier analysis on a 100 kHz

32 of 304 Liam McSherry
 EC1520839

PWM signal at 50% and 75% duty cycles. The result of the analysis is shown in
Figure 4 and, as can be seen, the most significant frequencies begin slightly above
3 kHz. The cut-off frequency for the filter is therefore selected as 3 kHz. Using
equations provided by a Texas Instruments report (2016, p. 9), the capacitance
and inductance for the LC filter were calculated as in Figure 5. The resistance
used in these calculations was determined as described in footnote 12.

L = (R√2) / 2πf
 = (103.725√2) / (3000×2π)
 = 0.007782…
 = 0.0078 H
L = 7.8 mH

C = 1 / (2πfR√2)
 = 1 / (2π×3000×103.725×√2)
 = 0.00000036166…
 = 0.000000362 F
C = 362 nF

Figure 5

Calculation of capacitance and inductance for LC filter

Unfortunately, this calculated inductance is entirely impractical—an inductor of
inductance 7.8 mH would be impractically large and impractically expensive, and
so cannot be used in the fan controller. However, it is anticipated that the effect
will remain largely the same—the majority of any variation likely being as a result
of the change in time constant and inherent or equivalent resistance—provided
that any capacitance is increased in proportion with any decrease in inductance.
Inspection of the stock list of an online retailer revealed the greatest selection of
inductors below the 500 μH range, and so to maintain a comparable effect there
must be selected a capacitance of (7.8×10−3/500×10−6)(362×10−9) = 5.65 μF or more.
However, given the typically-available values of capacitors, a 4.7 μF value is to be
used, and so the inductance is to be (362×10−9/4.7×10−6)(7.8×10−3) = 600 μH. The
subsequent simulation of a circuit with these selected values produced a result
comparable to simulation with the values from Figure 5, albeit with reduced
damping. The further simulation with an inductance of 470 μH did not produce
substantially different results, and so that value—found to be more common in
the stock of the online retailer—can be used instead.

This modelling is imperfect—a computer fan is unlikely to exactly resemble a
resistor. However, given that power is delivered to the fan motor through drive
electronics, it is expected that modelling the fan as a resistance is reasonable. It
will be necessary to confirm this through practical testing.

Further, while the selected inductances and capacitances are acceptable for loads
equivalent to or equivalent to less than the 103.725-ohm weighted midpoint (as
with such loads the filter will be overdamped or near-critically damped), it is not
entirely suitable for loads equivalent to more than the weighted midpoint. For
example, were a fan drawing 0.05 A to be connected (assumed equivalent to

12 The load was modelled as a variable resistance for simplicity. The power required to be
supplied to a fan was calculated using the fan current draw figures listed in Table 4 together
with the 12 V nominal supply voltage. The mean starting voltages for those fans—calculated
as 5.2 V—was treated as a worst-case voltage. An equivalent resistance was then found
through R=v²/P at nominal voltage (12 V) for the lowest-current fan, and at worst-case
voltage (5.2 V) for the current three standard deviations from the mean. These values are
the highest- and lowest-likely equivalent resistances—240 and 4.135 ohms respectively. To
find a single figure weighted based on the current draw of all identified fans, the mean of
the two aforementioned resistances and the equivalent resistance for the mean current
identified in Table 4 (67.04 ohms at 12 V) was taken. The resultant figure is 103.725 ohms.

Liam McSherry 33 of 304
EC1520839

12² × 0.05 = 240 ohms), the filter would be severely underdamped—indeed, the Q
factor for the filter in this case would be around 24 compared to the target of
around 0.707. In such cases, as confirmed by simulation, the voltage supplied to
the fan could greatly exceed the rated 12.6 V maximum. It is therefore necessary
to include a snubbing circuit to limit any voltage spikes to within tolerance.

Snubber selection

A number of techniques for snubbing spikes in voltage exist but, for simplicity, the
choice for this application is one of a Zener diode or transient-voltage-
suppression (TVS) diode. The two are similar—both are able to conduct in the
reverse direction without the damage a typical diode would sustain. There is also
the advantage that use of these devices instead of other snubbers, such as those
based around capacitors or an RC network, means that little consideration need
be given to the effect on the LC filter the output of which the device is to snub.

As for the selection of a device, there are only a few factors to consider—the
breakdown voltage (in the case of Zener diodes, more commonly called the Zener
voltage VZ), the power rating, and the maximum current rating.

The breakdown voltage rating is simple to determine. Computer fans are rated for
up to 12.6 V with a nominal voltage of 12 V. Therefore, a breakdown voltage
anywhere between 12 V and 12.6 V is acceptable. However, given that the power
supply is specified as supplying up to 12.6 V (PCI-SIG, 2008, p. 14), it would be
preferable to select a device with a breakdown voltage closer to 12.6 V so that the
diode is less likely to continuously be in conduction.

The power and maximum current ratings are less simple to determine, and use of
simulation is required so that an approximate figure for the voltage across the
diode can be known. As a worst-case test, a 400-ohm load was placed in the test
circuit (shown in Figure 3 with the capacitance and inductance from Figure 5) and
simulated. This an approximate 66% margin over the 240-ohm maximum given in
footnote 12 on page 32. The filter voltage is plotted in Figure 6, and the code used
to make the plot is given in Appendix C1.

34 of 304 Liam McSherry
 EC1520839

Figure 6

LC filter response at 12.6 V with a 400-ohm load

It can be seen that around 12 V could be placed across the snubber diode. While
this is only for a fraction of a millisecond, there is the potential for a significant
current to be produced, and a significant current could result in the power and
current ratings of the diode being exceeded. To avoid this, a current-limiting
resistor may be required, although it may be the case that the intrinsic resistance
of the diode is sufficient.

Using a further 50% margin of safety, any diode must then be rated to tolerate 18 V
in the reverse direction. Whether or not a current-limiting resistor is used, the
diode must also be rated both for the current and the power dissipation in the
diode as a result of the current at 18 V.

In selecting a diode, TVS diodes are discounted for the reason that they are
generally designed and specified for transients—very short duration spikes in
voltage—rather than for continuous conduction, and, given the variability of the
of the supply voltage (with magnitudes in the range 11.4–12.6 V being acceptable),
it is possible that a diode rated for reverse break down at 12.3 V could conduct
continuously, albeit at only a slight voltage of 0.3 V (Walters, 2010). The diode
selected for use in the snubber must therefore be a Zener diode.

Using the parametric search functions provided by two online parts retailers, and
specifying a Zener voltage of 12.0–12.55 V (to avoid reverse conduction at the
nominal 12 V), the diodes given in Table 9.

Liam McSherry 35 of 304
EC1520839

Table 9

Shortlist of Zener diodes for use in a snubber circuit

Part No.

Z
en

er
 V

o
lt

ag
e

(V
)13

Z
en

er
 C

ur
re

n
t

(m
A

)14

P
o

w
er

 (m
W

)

T
h

. R
es

is
ta

n
ce

 t
o

 A
ir

C
o

st
 (£

)

Diodes Inc. DDZ13ASF-7 12.43 10 500 250 0.130

Nexperia PDZ12B 11.99 0.5 400 340 0.176

Nexperia BZT52H-B12 12.00 1 375 330 0.222

Nexperia TDZ12J 12.00 1 500 250 0.284

Comchip CZRU52C13 12.00 1 150 — 0.299

Rohm VDZ12B 11.99 5 100 — 0.324

Nearly all Zener diodes returned by the parametric search—including many not
listed in Table 9—were rated for too low a Zener voltage (often in the range 11.4–
12.7 V, or 11.8–12.2 V), or were rated at too wide a tolerance (several diodes from
Rohm were rated at 12–13.5 V, for example).

The Diodes Inc. DDZ13ASF-7 is very nearly the best choice—it offers a relatively
high power rating, a relatively low case–air thermal resistance, and it is the least
expensive. However, the tolerance for its Zener voltage, at 12.11–12.75 V, places it
slightly outside (by 0.15 V) the rated maximum for computer fans. It therefore
cannot be selected.

The remaining devices in the table offer Zener voltages in the range 11.74–12.24 V
(for devices with a 11.99 V Zener voltage) or 11.8–12.2 V (for devices with a 12 V
Zener voltage). This means that, potentially, 12 V might never be delivered to a
computer fan, but does place the maximum voltage well within tolerance. Of the
devices remaining, the Nexperia TDZ12J offers the best combination of minimum
Zener current, power rating, thermal resistance, and Zener voltage tolerance, but
does so at a relatively high price. However, in absolute terms, the price is only
higher by around 9 pence per unit in single quantities, and would decrease when
ordering in larger quantities. The device is also available (at a comparable price)
at both retailers searched. The Nexperia TDZ12J is therefore selected as the
Zener diode for use in the snubber circuit.

Next there must be selected the current-limiting resistor which will prevent the

13 Where a range of voltages is given, this is the midpoint. Where possible, the minimum
and maximum Zener voltages are within the range 12.1–12.6 V.
14 Most data sheets did not specify a value for IZK (minimum Zener current to assure
reasonable regulation) (ON Semiconductor, 2005, p. 7), and so where no value was
specified the lowest Zener current rating given in the datasheet is taken to be IZK, and that
IZK is the value represented in this table.

36 of 304 Liam McSherry
 EC1520839

current through the diode from being such that the maximum power dissipation
or maximum temperature of the diode is exceeded. While the ideal case would
be to exceed the Zener current at all points during operation, it is not expected
that this will be possible. However, by selecting the resistor to provide the
maximum current for dissipating the maximum power at the maximum expected
voltage, the best coverage across the range can be achieved. That maximum can
be determined through application of the formula P=IV as follows.

P = 0.5 W
V = 18 V

P = IV
I = P/V

= 0.5 / 18
= 0.0278

I = 27.8 mA

However, the ratings of the diode cannot be taken in isolation. The diode is
specified as having a maximum junction temperature of 150 ºC and a case–air
thermal resistance of 250 ºC/W (Nexperia, 2011b, p. 3). Therefore, at 0.5 W, the
environment the diode is in must have an ambient temperature not exceeding
150−(250×0.5) = 150−125 = 25 ºC. Unfortunately, the inside of a computer chassis
is likely to have a widely-varying ambient temperature, and so it is unlikely that
this 25 ºC maximum could be attained. As well as a typical room temperature of
22 ºC, a chassis could contain various high-power components exhausting heated
air, and poor maintenance could lead to exhaust from the chassis being impeded
by dust or other detritus. To gather information on the likely ambient
temperatures, a computer was placed under load and temperature information
provided by sensors mounted on the computer’s motherboard were recorded.
While portions of the system (in particular, around the computer’s central
processing unit) reached as high as 60 ºC, neither of two “thermal zone” sensors
on the motherboard exceeded 30 ºC. Given the variability and unpredictability of
this factor, the use of a 150% margin of safety is considered appropriate, and so
the ambient temperature inside a computer chassis is assumed to be 75 ºC.

Given the device maximum junction temperature of 150 ºC, the power dissipated
by the diode must then not exceed (150−75)/250 = 0.3 W. Performing the current
calculation above with this new maximum power rating, it can be determined that
the current through the diode must not exceed 16.7 mA. The minimum resistance
can then be determined through application of Ohm’s law V=IR as follows.

V = 18 V
I = 16.7×10−3 A

V = IR
R = V/I

= 18 / 16.7×10−3
= 1078

R ≥ 1078 Ω

Taking into consideration that the Zener voltage of the diode may be as high as
12.2 V, and that the supply voltage may be as high as 12.6 V, a worst-case Zener
current can be calculated by further application of Ohm’s law. If a 1100-ohm
resistor were to be used (as it is highly unlikely any manufacturer sells a 1078-ohm
resistor), the voltage of 0.4 V across the diode would produce a 0.36 mA Zener
current. While this current is below the lowest testing value given in the datasheet
(1 mA), the difference is relatively slight. It is expected that the Zener diode will

Liam McSherry 37 of 304
EC1520839

conduct as required at the current level, albeit with some drift from the nominal
Zener voltage. To be certain, this behaviour must be confirmed by practical
experiment, if possible. Further, while there do exist other conditions which
could result in a lower voltage across the diode (for example, a 12.2 V Zener
voltage and 12.3 V supply voltage), under these conditions the supply voltage
remains within the rated maximum for the fans and so it is immaterial whether
the diode conducts or not.

Control transistor

In order to produce the PWM waveform that is filtered, there must be some way
to switch that circuit. As the 12 V supply voltage exceeds the maximum ratings for
the selected microcontrollers—although even if it did not, the microcontroller
would not be able to source sufficient current—this control must be through a
separate device. In this case, given the desired 100 kHz switching frequency, the
selected device is a transistor.

As established, the transistor must be minimally rated to switch 1.5 A steady-state
and 2.2 A pulsed at 12 V, and should be rated such that the power dissipated in it
does not result in the junction temperature exceeding the maximum, taking into
consideration the 75 ºC ambient established earlier in this chapter. A parametric
search of two online parts retailers was made, entering as many of these criteria
as possible. In this search, a 50% margin of safety was added to each rating but
the temperature. A shortlist of results is given in Table 10.

Table 10

Shortlist of PWM DAC control transistors

Part No.

D
ra

in
-t

o
-S

o
ur

ce

V
o

lt
ag

e
(V

D
S

S
)

D
ra

in
 C

ur
re

n
t

(A
)

P
o

w
er

 (W
)

T
h

er
m

al
 R

es
is

ta
n

ce

Ju
n

ct
io

n
 T

em
p.

 (º
C

)

T
yp

e

C
o

st
 (£

)

Fairchild FDMS7682 30.0 16.0 2.5 50 150 M 0.350

TI CSD15571Q2 20.0 10.0 2.5 50 150 M 0.360

Alpha&Omega AOD514 30.0 36.0 25.0 50 175 M 0.380

WeEn PHD13005 400.0 4.0 75.0 60 150 B 0.430

ST BUL128D-B 400.0 4.0 70.0 62.5 150 B 0.450

Infineon

IRF8707TRPBF

30.0 9.1 1.6 50 150 M 0.450

TI CSD17578Q3A 30.0 20.0 2.5 50 150 M 0.510

Infineon

IPD30N06S2L-23

55.0 30.0 100.0 50 175 M 0.750

Infineon

IGD06N60TATMA1

600.0 6.0 88.0 62 175 I 0.790

38 of 304 Liam McSherry
 EC1520839

Part No.

D
ra

in
-t

o
-S

o
ur

ce

V
o

lt
ag

e
(V

D
S

S
)

D
ra

in
 C

ur
re

n
t

(A
)

P
o

w
er

 (W
)

T
h

er
m

al
 R

es
is

ta
n

ce

Ju
n

ct
io

n
 T

em
p.

 (º
C

)

T
yp

e

C
o

st
 (£

)

ST STGP5H60DF 600.0 5.0 24 62.5 175 I 0.870

ST STL58N3LLH5 30.0 56.0 62.5 31.3 175 M 0.930

Note 1: The type abbreviations are B for BJT, I for IGBT, and M for MOSFET.

Note 2: The thermal resistances are junction–air or junction–mounting, depending on the
information given in the relevant datasheet. The values given may only be attainable
with the use of a copper-pour heatsink on the circuit board.

Considering that all devices listed in Table 10 have suitable voltage and current
ratings, and that the power rating is largely dependent on temperature, a simple
method of sorting the shortlist for selection is to sort for the most economical
part based on that part’s thermal characteristics. To do this, a score for each
device was calculated as a quotient, where the thermal conductivity (i.e. the
inverse thermal resistance, or W/ºC) is the dividend and the cost is the divisor. A
score so calculated increases with lowered resistance and decreases with greater
cost.

The highest-scoring device is the Fairchild FDMS7682. Per the datasheet (2015a),
the device is rated for a maximum junction temperature of 150 ºC, and a thermal
resistance of 50 ºC/W when mounted on a 1 in² (approximately 6.5 cm²) cooling
pad on the circuit board. Adjusting for the ambient temperature of 75 ºC, the limit
for power dissipation is (150−75) / 50 = 75/50 = 1.5 W.

To determine whether the power dissipated by the FDMS7682 will remain within
tolerance, datasheet figure 1 (the drain current against the drain–source voltage)
can be applied to give a voltage drop of approximately 0.05 V at 3.3 A drain
current (assuming gate–source voltage is 3.5 V), or an effective RDS(ON) of 15.2
milliohms—not an unreasonable value given the 8 milliohms listed for a gate–
source voltage of 4.5 V and a drain current of 11 A. By applying datasheet figure 3
(normalised on resistance vs. junction temperature) for a worst-case scenario
junction temperature of 150 ºC, this effective resistance (and hence the voltage
drop across the transistor) may increase by factor of around 1.55, and so
0.0152×1.55=0.0235 ohm is the effective worst-case scenario RDS(ON). This new
effective resistance can then be substituted into the resistive power dissipation
formula P=I²RDS(ON) with the peak 3.3 A fan current to give the resistive power
dissipation of 3.3²×0.0235=0.256 W.

However, this is not the total dissipation—there are further losses involved with
switching the transistor, calculated as P=CRSSVIN²fSWILOAD/IGATE per Keagy (2002).
With a 5 mA gate current—selected to be well within the sourcing capacity of the
selected microcontroller—this calculation gives a further dissipation of
(75×10−¹²×12²×100×10³×3.3) / (5×10−³) = 0.713 W. The total power dissipation in the
device is therefore 0.256+0.713=0.969 W. This is well within the 1.5 W steady-
state limit, and even further within any pulsed limit. The peak current may only

Liam McSherry 39 of 304
EC1520839

be drawn for 1 second, and application of datasheet figure 13 (junction-to-
ambient transient thermal response curve) shows that the effective thermal
resistance for a one-second pulse does not exceed 0.6× the steady-state value. At
a thermal resistance of 0.6×50=30 ºC/W, the device maximum power dissipation
can be taken as 2.5 W—not far from three times the calculated peak power.

If both the resistive and switching loss calculations were to be performed again
with a current of 2.25 A (that is, the 1.5 A maximum continuous load current with
a 50% margin of safety), the result would be PR+PS=0.119+0.486=0.605 W. This
figure is even further below the steady-state safe maximum of 1.5 W, and so there
is no issue with use of the FDMS7682.

The Fairchild FDMS7682 is therefore selected as the control transistor.

11. Driver stack

11.1 Driver fundamentals and stack selection
In the most popular computer operating systems, there exists a separation of
privileges. Not at the application program level, where a program may execute as
a normal user or administrator (or superuser), but at a more basic level—enforced
by the central processing unit (CPU), software generally executes either in a high-
privilege “kernel mode” or a low-privilege “user mode.”

The primary use for this separation is security. In user mode, access to system
memory is restricted, and certain instructions—if fetched by the CPU—fail to
execute. In particular, most or all of the instructions related to input and output,
to interacting with hardware devices connected to the CPU, are privileged. These
restrictions prevent one program from interfering with another, and prevent any
malicious software from interacting with—and potentially damaging—any device
connected to the system.

In kernel mode (so called because it is the mode in which the core components
of an operating system execute), access is entirely unlimited. Memory access is
unrestricted, and kernel-mode instructions can modify the memory of processes
which, in user mode, would be entirely isolated from one another. Most
importantly for the purposes of this project, kernel-mode software can interface
directly with any connected hardware devices.

Most modern operating systems permit device drivers to operate in kernel or user
mode—either with direct hardware access in kernel mode, or by a user-mode
driver communicating with a kernel-mode intermediary. Each method has its
advantages and disadvantages and, while it is important that these are considered,
a driver could be implemented as either type.

The obvious advantage of a kernel mode driver is that access is unlimited, and so
any “special” device which needs particular handling can be supported. However,
the primary disadvantages are complexity (in the kernel, access to the typical
libraries which would be found in user mode is limited) and the unsafety—any
fault in a kernel-mode driver has the potential to do widespread harm, whether
by corrupting the memory of user-mode processes, introducing bugs which
enable arbitrary code execution in kernel mode (as a worst-case example), or the
simple fact that many things which would result in a user-mode process crashing

40 of 304 Liam McSherry
 EC1520839

will, in kernel mode, produce a processor exception and result in the operating
system crashing (potentially resulting in data loss or corruption).

In contrast, a user-mode driver can make use of all the safety mechanisms
afforded to regular user-mode programs, and is largely no more complicated than
a regular user-mode program. The primary disadvantage is that a user-mode
driver is limited to the functionality provided by its intermediary, and so any
special or bespoke handling cannot be done by the user-mode driver. For the best
of both worlds, many drivers are implemented as a hybrid system with the core
functionality in a kernel-mode driver which is then utilised by a user-mode driver
to provide further functionality.

Fortunately, the choice for this project is simple. As, for simplicity and ease of
availability, the target computer uses a Windows operating system, the generic
user-mode USB driver for Windows—WinUSB—can be used to interface with the
fan controller.

11.2 Firmware considerations
Windows supports the automatic loading of WinUSB as the driver stack. This
simplifies the installation process, and requires only that the firmware provide a
specific set of values when queried. Such devices are referred to by the driver
documentation as “WinUSB devices” (Microsoft Corporation, n.d.).

12. Control modes
One of the most fundamental features of the fan controller is the option to
determine how the controller will behave in controlling the fans. While one mode
of control may be acceptable, the ideal case is to provide several options which
cover the probable needs of a majority of users.

This chapter will discuss a number of potential control modes.

12.1 Voltage control
Likely the simplest mode, enabling a user to control the fans through adjustment
of the supplied voltage is also the crudest mode. A user would be provided with
an interface that would enable the setting of fan voltage against temperature (or
another set of data the controller collects or with which it is provided).

Control by voltage would depend heavily on the characteristics of the fan—for
each fan there is a voltage below which the fan motor may fail to turn, and so the
user would be restricted to a relatively thin band of voltages between 12 V and
this minimum; and as discussed in chapter 8.2, the current drawn by the fan is
expected to increase as the voltage supplied to the fan is decreased, and so the
thin band of voltages would be further limited to ensure that component current
ratings are not exceeded.

This mode is not unviable, but would require the fan controller to determine the
characteristics of each fan. However, while this may seem like substantial work,
it will be seen in the following sections that this requirement is independent of
the control mode.

12.2 Speed control
Although somewhat analogous to control by voltage, speed control of fans is a

Liam McSherry 41 of 304
EC1520839

layer abstracted. A user would continue to be provided with an interface enabling
configuration against temperature (or other information), but instead of voltage
the configurable parameter would be fan speed—likely as a percentage, but it
would not be infeasible to give an absolute value in revolutions per minute.

The primary difference from control by voltage is that the controller would need
to continually adjust either the voltage supplied to the fan or, for 4-pin varieties
of fan, the duty cycle of the PWM signal provided to the fan. This would require
that the controller continually monitor the fan tachometer output, and so this
mode of control cannot be made available for 2-pin fan varieties (which lack a
tachometer connection). Further, depending on the performance and viability of
the voltage control discussed in chapter 10.2, it may be the case that the output
of the tachometer for 3-pin fans is unusable, and so this mode of control may only
be viable for fans of the 4-pin type.

If speed control of 3-pin fan types is viable as-discussed, then the issues that exist
for voltage control also exist for the speed control of 3-pin fans. The controller
must then determine the minimum starting voltage for each 3-pin fan, and must
ensure that no change in voltage causes the current draw of the fan to exceed the
1.5 A permitted maximum.

12.3 Temperature point control
Control based around a temperature setpoint is the most abstract of the control
modes considered. The mode is largely declarative, with the user specifying only
a desired temperature, in contrast to the imperative voltage- and speed-control
modes where the user must determine the correct fan configurations to attain a
desired temperature—put more briefly, the mode specifies what instead of how.

While the concept is simple to understand—the further above the setpoint the
temperature is, the faster the fans must spin—there are slight details important to
the operation of the system. For example, the correct sampling rate must be
chosen—too fast a rate, and there may be insufficient time for the temperature in
the computer chassis to change, prompting the controller to rapidly increase the
fan speed until it entered saturation; and too slow a rate could result in heating
past what is desired as the controller fails to respond promptly.

Further, there may not be a “one size fits all” formula for the implementing of
temperature setpoint control. One user may prefer if fans are powered off entirely
until the setpoint is exceeded, while another may be indifferent. There is unlikely
to be sufficient time to implement a highly-configurable type of setpoint control,
but it is important that its potential future addition be taken into consideration in
specifying the fan control protocol.

13. Protocol
The protocol defines the interface and rules for communication between the fan
controller and the host computer. This chapter provides general discussion about
the protocol and the specification of protocols for communication over USB. The
protocol specification is given in Appendix D.

Per chapter 10.1, USB 2.0 is the revision in use. Nothing in this chapter or the
protocol specification should be taken otherwise than in the context of USB 2.0
unless so identified.

42 of 304 Liam McSherry
 EC1520839

13.1 Identification
While the most basic details of how a USB host identifies connected devices are
not important here, it is important to be aware of the higher-level details of the
communications between USB device and host, beginning with how a host selects
the driver to be used to communicate with a USB device.

The most basic component of a USB device protocol is the endpoint. It may at
first seem intuitive to think of an endpoint as being analogous to an Internet
Protocol (IP) address—broadly, both identify the destination of a particular
communication—but, in fact, an endpoint is more comparable to a Transmission
Control Protocol (TCP) port in that an endpoint identifies a particular “service”
of a USB device,15 and a TCP port generally identifies a particular software
application on a network host. This comparison is not perfect, and there is the
facility for a transmission to be marked as being for an endpoint, an interface, or
the USB device generally. However, despite any marking, the transmission is still
made to an endpoint, albeit the specially-designated “default control” endpoint.
To use the Open Systems Interconnection (OSI) model, an endpoint could be
considered a constituent in the transport layer—the layer which “provides
transparent transfer of data between session-entities and relieves them from any
concern with the detailed way in which reliable and cost-effective transfer of data
is achieved” (BSI, 1995, p. 32).

Each endpoint is a constituent, with or without other endpoints, of an interface.
Where an endpoint represents a particular “service,” an interface represents a
particular facility provided by the device. For example, an interface might
represent a printer, and that interface might have two endpoints—one endpoint
for control, such as instructing the printer to begin a print, and another to transfer
the data to be printed. A device may have multiple interfaces, each representing
a different facility. For example, if the printer had built into it a port for a storage
device (such as an SD card), it might have a separate interface for interaction with
that port. Each interface may also have a list of alternates, which may each have
a distinct set of endpoints. For example, a signal generator with a single output
might define a single interface to control that output with alternate interfaces for
each type of waveform the generator can produce—one alternate for a sine wave,
one for a sawtooth wave, another for a square wave, and so on.

One or more interfaces is then grouped into a configuration, and a USB device
may have multiple configurations. Unlike interfaces, only a single configuration is
permitted to be active at any one time.

Associated with each of these logical groupings—configurations, interfaces, and
endpoints—is a descriptor giving information about that grouping. Identification
of a USB device primarily works with the interface descriptors or with a “device
descriptor” containing device-wide information. A device or interface indicates
its type (or class) through three fields—a class identifier, a subclass identifier, and
a protocol revision identifier. These fields are generally the fields used by a host
computer to identify which drivers to use.

15 In the USB standard, the term function means “a USB device that provides a capability to
the host, such as an ISDN connection, a digital microphone, or speakers.” (p. 6). To prevent
confusion, use of this term in any USB discussion has been avoided.

Liam McSherry 43 of 304
EC1520839

The standard class identifiers for generic classes of device are given in Table 11.

Table 11

Standard USB class identifiers

ID Type Description

00h Device Use class information in the Interface descriptors.

01h Interface Audio

02h Both Communications and CDC Control

03h Interface HID (Human Interface Device)

05h Interface Physical

06h Interface Image

07h Interface Printer

08h Interface Mass Storage

09h Device Hub

0Ah Interface CDC-Data

0Bh Interface Smart Card

0Dh Interface Content Security

0Eh Interface Video

0Fh Interface Personal Healthcare

10h Interface Audio/Video Devices

11h Device Billboard

12h Interface USB Type-C Bridge

DCh Both Diagnostic Device

E0h Interface Wireless Controller

EFh Both Miscellaneous

FEh Interface Application Specific

FFh Both Vendor Specific

For most of the classes, there exists a specification describing the subclasses and
protocols to be used with that class. For example, the Mass Storage device class
specification (USB-IF, 2010) defines a number of subclasses for the commands
supported by storage devices—for example, subclass 06h is for the SCSI
command set, 08h is for IEEE 1667 (“standard for discovery, authentication, and
authorization in host attachments of storage devices”), and FFh is for vendor-
specific command sets. The specification then uses the protocol identifier for the
method of encapsulating this command set over USB. This generic specification
would then allow an operating system to be shipped with a number of generic
drivers, allowing basic devices (such as keyboards, mice, and storage devices) to
function without the need to provide a driver of their own.

In the case of this project, however, there does not exist a relevant device class

44 of 304 Liam McSherry
 EC1520839

specification, and so the device would specify the “Vendor Specific” class. This is
important for device identification in the drivers, although under the Windows
operating systems a class of devices can be represented by a GUID16 independent
of the interface (i.e. whether USB, PS/2, or otherwise).

To give specific detail, software on the host computer uses a “device interface
GUID” with the SetupDiGetClassDevs function to retrieve a handle17 which can
be used to retrieve a set of all devices connected to the host computer using that
specific device interface GUID. In this case, the device interface GUID is
specified in a Microsoft-defined descriptor the device returns when queried, and
which is automatically registered with the operating system during USB device
enumeration. The handle retrieved using that function is then provided to the
SetupDiEnumDeviceInterfaces function, which enables basic information for
each “device interface” to be retrieved. This basic information is then provided
to the SetupDiGetDeviceInterfaceDetail function, which provides further
detail on that specific device interface. The value returned from this function
includes a “device path,” which is provided to the CreateFile function as the
file path argument. CreateFile returns a file handle, an abstraction for access to
files and other input–output devices, which represents the USB device and which
is provided to the WinUsb_Initialize function to retrieve a handle to the first
USB interface reported by the device. This interface handle can then be provided
as an argument to other functions in the WinUSB API to enable interaction with
that interface—for example, the WinUsb_GetDescriptor function enables the
retrieval of a device’s descriptors given the interface handle, the descriptor type
identifier, the descriptor index,18 and language identifier (if the descriptor is a
string descriptor), among other inputs (USB-IF, 2000, pp. 32–37, 244–245, 248,
261–263, 267–269; Axelson, 2009, pp. 103–112, 219–221; USB-IF, 2016; Microsoft
Corporation, n.d.).

13.2 Communication

Modes of communication

While the previous section made a comparison to the OSI transport layer, it is not
so easy to make a comparison to higher-level layers in the OSI model. Though
what the USB specification refers to as transfer types most closely resemble the
transport layer, the choice of transfer type impacts the choice of protocol in a
higher layer. If an endpoint is set to be a control transfer endpoint, the use of a
USB-defined request–response model is required, and a particular sequence of
packets—a packet initiating the transfer, followed by a packet specifying the type
of request, then by any data, and then by a status-reporting packet—must be sent,
whereas with an interrupt, bulk, or isochronous endpoint, there exists no
restriction on the communications model and any data sent in a transaction is

16 Globally Unique Identifiers (GUIDs) are identifiers, also called Universally Unique
Identifiers (UUIDs), generated in such a way that there is unlikely to be a conflict with
another GUID/UUID generated by another person (ITU, 2012).
17 A “handle” is an identifier specific to a particular application programming interface (API).
A handle is analogous to a pointer in that a handle refers to a specific object and is used as
an indicator where that object is stored. However, details of the interpretation of the value
of the handle are generally known only by the API.
18 The descriptor index is used to differentiate between multiple descriptors of the same
type (USB-IF, 2000, p. 253).

Liam McSherry 45 of 304
EC1520839

transferred immediately after the initiator packet. Where in isolation the request–
response model for control transfers could be considered part of the session
layer—that is, the layer enabling entities “to organize and synchronize their
dialogue and manage their data exchange” (BSI, 1995, p. 31)—or another higher
layer, its relationship with what could be considered the transport-layer
components of the system place it somewhere in-between.

This consideration out of the way, the transfer types are the main differentiators
between endpoints. As well as enforcing (or not enforcing) a particular format for
transmissions, each type defines a quality of service the host must afford to the
device, and which the device can assume will be provided. The USB specification
summarises the transfer types as follows (2000, p. 37):

■ Control transfers — bursty, non-periodic, host software-initiated request–
response communication, typically used for command–status operations.

■ Isochronous transfers — Periodic, continuous communication between
host and device, typically used for time-relevant information. This transfer
type also preserves the concept of time encapsulated in the data. This does
not imply, however, that the delivery needs of such data are always time-
critical.

■ Interrupt transfers — Low-frequency, bounded-latency communications.

■ Bulk transfers — Non-periodic, large-packet bursty communications,
typically used for data that can use any available bandwidth and can also be
delayed until bandwidth is available.

Considering the requirements for the fan controller (chapter 2), it is unlikely that
the fan controller will require the use of “any available bandwidth,” except in the
fulfilment of requirement 2.2.4 (the in-circuit updating of firmware). But, as
established in chapter 9.4, there exists a separate device class specification for
use where the ability to update the firmware of a USB device is desired. There is
therefore little need for a bulk transfer endpoint.

Further, while communication between the fan controller and host computer is
likely to be low frequency, there is no need for the maximum limit on latency that
the interrupt transfer type provides. Regardless, the facility to arrange—in a
standard way—for the periodic polling of a specific endpoint could be useful for
any continuous status-monitoring process on the host computer. The use of an
interrupt endpoint, perhaps in an alternate interface so that a monitoring facility
can be enabled and disabled, is therefore something to consider, but provides no
real advantage. Further, as per the USB specification (2000, p. 51), the interval
specified for an interrupt endpoint is a maximum—the device could be polled
once or many times in the specified period.

For much the same reasons as for interrupt transfers—and for the reason that a
prerequisite is a Full Speed rather than Low Speed device—there is no benefit to
be had from the use of isochronous transfers with the fan controller.

It therefore makes the most sense to use only a control transfer endpoint and, as
the USB specification requires that endpoint zero be allocated by a device for use

46 of 304 Liam McSherry
 EC1520839

as the “default control pipe,”19 use of only a control transfer endpoint has the
advantage of requiring no additional endpoint configuration. Accordingly, any
protocol defined for the fan controller must adhere to the “message pipe” format
used by control transfer endpoints (USB-IF, 2000, pp. 34, 37, 44, § 8.5).

Control transfer specifics

In the terms used by the USB specification, control transfer pipes are “message
pipes,” and must follow the standard format for requests and responses. A control
transfer has three discrete stages—the setup, data transfer, and status. Entry into
the setup stage is prompted by the host computer sending a SETUP packet, and
it is this packet which contains the meta-information about the message. The
format of this packet is shown in Table 12.

Table 12

Format of a USB SETUP packet

(USB-IF, 2000, table 9-2)

Offset Field Size Value Description

0 bmRequestType 1 Bitmap Characteristics of request.

1 bRequest 1 Value Specific request code.

2 wValue 2 Value Word-sized field that varies
according to request.

4 wIndex 2 Index or
Offset

Word-sized field that varies
according to request;
typically used to pass an
index or offset.

6 wLength 2 Count Number of bytes to transfer
if there is a data stage.

The bmRequestType field of the packet specifies the data transfer direction (into
or out from the host), the type of request (whether standard, specific to the device
class, or specific to the vendor), and the recipient of the request (the device, an
interface, or an endpoint). Qualified by this value, the bRequest field is used to
identify the particular request being sent.

The USB specification defines a number of standard device requests which are
defined on the device level and generally for use in the initial configuration of the
device. The standard request of most interest in the specifying of the protocol is
the GET_DESCRIPTOR request, as this request provides a standard method of
retrieving class- or vendor-specific descriptors and so has the advantage that any
function provided with a USB driver library for the retrieval of descriptors can be
used, such as the WinUsb_GetDescriptor function.

The standard format for a descriptor is a single-byte field giving the length of the
descriptor and a further single-byte field giving the type. In a manner similar to
that for requests, the type-identifying byte is subdivided into further fields as a

19 “Pipe” being the term the USB specification (2000, § 5.3.2) uses for an endpoint
associated with software on the host computer.

Liam McSherry 47 of 304
EC1520839

simple method of dividing the available descriptor identifiers into standard, class-
specific, and vendor-specific ranges. The format of the type-identifying byte is
given in Table 13.

Table 13

Format of the USB bDescriptorType field

(USB-IF, 1997, § 3.11)

Bit Field Description

0 Identifier The specific descriptor. For standard descriptors and
descriptors for standard device classes, assigned by
the USB-IF. For vendor descriptors, assigned by the
vendor.

1

2

3

4

5 Type The type of descriptor.
0 = Standard
1 = Class
2 = Vendor
3 = Reserved

6

7 — Reserved for future use. Reset to zero.

Where possible, then, the use of class- or vendor-specific descriptors should be
considered over the use of class- or vendor-specific requests to avoid any
unnecessary feature duplication (USB-IF, 2000, pp. 34–38, 225–228, 248–261,
269–273).

• PAGE INTENTIONALLY LEFT BLANK •

Liam McSherry 49 of 304
EC1520839

Design and Implementation

Chapter Page

14. Proof-of-concept prototype . 50

14.1 Hardware selection 51

Flyback diode 51

Inductor 52

Capacitor 53

Tachometer interface 53

Fan PWM interface 56

Power connector 56

Supply-monitoring transducers 57

Temperature sensor 58

Fan connector 59

Expansion header 60

14.2 Microcontroller connection 60

14.3 Hardware design rationale 62

MOSFET gate resistor 62

PWM DAC voltage transducer 62

Current-sense resistor 63

MOSFET copper pours and stitched vias 63

14.4 Firmware 64

Program specification 64

Design and source code 64

Interrupt dependencies 64

Clock dependencies 65

Testing and verification 67

15. Ancillary prototypes . 67

15.1 USB prototype 67

General structure 68

Requirements specification 68

Design and source code 68

Interrupt and clock dependencies 69

15.2 Sensors prototype 69

16. Production design . 69

16.1 Computer fans 69

Speed control 69

Monitoring: supply voltage and current 70

50 of 304 Liam McSherry
 EC1520839

Monitoring: fan functionality 70

Monitoring: fan speed 71

16.2 Form factor 73

Physical dimensions: review 73

Metal sled design 74

16.3 Power delivery 74

PCI-E 12 V supply 74

USB 5 V supply 75

Protection and control: general 75

Protection and control: 12 V supply 76

Protection and control: 5 V supply 77

16.4 Host–controller interface 78

16.5 Driver stack 78

Windows.Devices.Usb 78

Alternatives to Windows.Devices.Usb 79

General architecture 80

16.6 Protocol 80

Flaws in the Appendix D protocol 81

Architectural changes in the new protocol 81

Specific changes in the new protocol 82

16.7 Miscellaneous 83

Firmware storage and upgradeability 83

Microcontroller-autonomous fan monitoring, etc. 85

Additional analogue-to-digital converter channels 86

14. Proof-of-concept prototype
As noted at various points in the Research and Theory partition, it is important
that aspects of the fan controller are practically tested and proven to work before
any final prototype is designed or manufactured. If this were not done, the project
could be irrecoverably compromised if it becomes clear that those aspects were
not viable or required further work.

The two aspects of the controller requiring investigation are the following:

■ Whether the PWM DAC functions as expected and, if it does, whether the
output of the fan tachometer is accurate and usable at reduced voltage.

■ What impact on the output of the fan tachometer there is when using PWM
to directly modulate—that is, without the PWM DAC—the supply to the fan.

This chapter covers the design and development of a proof-of-concept prototype
to investigate these aspects of the controller.

Appendix F contains resources relevant to the proof-of-concept prototype.

Liam McSherry 51 of 304
EC1520839

14.1 Hardware selection
The components selected in chapter 10 are to be used in the prototype. Covered
in this section is the selection of ancillary components. Appendix F1 contains a
final bill of materials for the prototype.

Flyback diode

The flyback diode enables the recirculation of current in the circuit when the
control transistor is switched off. If the flyback diode were not included, the
inductor’s tendency to oppose changes in current would result in an increasingly
high voltage being produced. Instead of producing this high voltage in an attempt
to conduct through whichever medium (air, solder mask, et cetera), the inductor
finds a relatively low-resistance path through the flyback diode.

The absolute minimum requirements for the flyback diode are largely the same
as for other circuit components—a sustained current of 1.5 A, a pulse current of
2.2 A, a voltage of 24.4 V, and an ambient temperature of 75 ºC. The temperature
includes a margin of safety, but at least a 50% margin of safety must be added to
the other requirements. A flyback diode must therefore be rated around 2.25 A
continuously, 3.3 A peak, and 36.2 V. As before, a parametric search of the stock
of two online parts suppliers was performed to identify candidate diodes.

Table 14

Shortlist of PWM DAC flyback diodes

Part No.

F
or

w
ar

d
V

ol
ta

g
e

(V
)

R
ev

er
se

V

ol
ta

g
e

(V
)

C
ur

re
nt

 (A
)

T
he

rm
al

R

es
is

ta
nc

e

Ju
nc

ti
on

T

em
p.

 (º
C

)

C
os

t
(£

)
Rectron 1N5404-B 1.00 400 3.0 30 150 0.185

Comchip 1N5401-G 1.00 400 3.0 18 125 0.306

Diodes SDT5H100P5-7 0.62 100 5.0 88 150 0.337

Comchip CDBA540-HF 0.55 40 5.0 24 150 0.352

Nexperia PMEG4050EP 0.49 40 5.0 120 150 0.360

Diodes MBR5200VPTR-E1 0.95 200 5.0 30 150 0.391

Vishay SB550-E3/54 0.65 50 5.0 25 150 0.406

Diodes SB540-T 0.55 40 5.0 25 125 0.498

WeEn NXPS20H100C 0.64 100 10.0 60 175 0.520

ON NTSV30120CTG 0.59 120 30.0 70 150 0.635

Fairchild SB5100 0.85 100 5.0 25 150 0.681

Note: The unit of thermal resistance is ºC/W. The given thermal resistances may only be
attainable in circumstances specified in the device datasheet.

The power dissipated by a diode is a function of the current through the diode
and the voltage across the diode, and so a diode should have as low a forward
voltage as is economically justifiable. Further, the rise in junction temperature
that is experienced by a diode depends on the power it dissipates and its thermal
resistance, and so thermal resistance should also play a factor. Therefore, in a

52 of 304 Liam McSherry
 EC1520839

manner comparable to that used to select a PWM DAC control transistor from
Table 10, each device in Table 14 was assigned a score which decreased with
forward voltage and price, and which increased with thermal conductivity.

The device with the highest score (0.168) is the Comchip CDBA540-HF. Using its
forward voltage of 0.55 V and the maximum current of 3.3 A, it can be determined
that this device will dissipate 0.55×3.3 = 1.82 W. With a junction–ambient thermal
resistance of 24 ºC/W, the diode temperature will rise by 1.82×24 = 43.6 ºC. The
ambient temperature is taken to be 75 ºC and the device’s maximum junction
temperature is given as 150 ºC, giving a maximum permissible rise in temperature
of 150−75 = 75 ºC. As the calculated 43.6 ºC ≤ 75 ºC, the Comchip CDBA540-HF
can be used as the flyback diode for the filter.

Inductor

Unlike other components in the prototype, there are few factors which affect the
selection of an appropriate inductor. Provided that the device is suitably rated
for the most common parameters, the least-expensive option is often suitable for
all but the most specialised of applications.

To select an appropriate inductor, a parametric search on the stock of two online
parts retailers was performed. The parameters entered were a current rating of at
least 3.3 A and an inductance in the 470–600 μH range. The first five lowest-cost
results are given in Table 15.

Table 15

Shortlist of PWM DAC inductors

Part No. Value (μH) IMAX (A) Max. Temp. (ºC) Type Cost (£)

Bourns PM2120-471K-RC 470±10% 3.3 105 SMT 1.840

Murata 60B474C 470±15% 3.5 85 SMT 2.270

J.W. Miller 2321-H-RC 560±15% 3.6 105 THT 2.440

Signal HCTI-560-3.6 560±15% 3.6 105 THT 2.530

J.W. Miller 2200LL-471-RC 470±20% 3.7 125 THT 2.910

In this case, the lowest-cost inductor is a highly-preferably option—the device
has the tightest tolerance, a mid-range maximum temperature, and a satisfactory
current rating. It is, however, a relatively large device, at approximately 3×2.5 cm,
and so would consume considerable space on any circuit board. However, while
the next device in the table (the Murata 60B474C) is provided in a 2.4×2.7 cm
package, the low temperature rating precludes its use. The remaining devices are
of a “through-hole technology” type, which can increase the cost of manufacture
and assembly, and have looser tolerances for their values.

The temperature rating of the PM2120-471K-RC is relatively tight. The ambient
temperature of 75 ºC and the temperature rise above ambient of 30 ºC typical at
given in the device datasheet would result in the device operating at its absolute
maximum rating if it were operated at 3.3 A. However, this 3.3 A is a peak current
and includes a sizable margin of safety—at the 2.25 A continuous current (which
also incorporates a margin of safety), the temperature rise will not be as great.

Liam McSherry 53 of 304
EC1520839

The Bourns PM2120-471K-RC is therefore a suitable device for use in the filter.

Capacitor

As with the choice of inductor, the least expensive of any appropriately-rated
capacitor will generally be suitable for use. As before, a parametric search of the
stock of two online parts retailers was performed with the parameters being a
rated capacitance of 4.7 μF, a tolerance of 5–10%, a D.C. voltage rating of 50 V or
greater, a surface-mount package type, and a maximum operating temperature of
at least 125 ºC. Table 16 lists the first four results with unique manufacturers and
the first device rated for 150 ºC.

Table 16

Shortlist of PWM DAC capacitors

Part No. VDC Max. Temp. (ºC) Package Cost (£)

Taiyo Yuden UMK316AB475KL-T 50 125 1206 (3216) 0.190

Samsung CL31B475KBHNNNE 50 125 1206 (3216) 0.250

KEMET C1206C475K5RACTU 50 125 1206 (3216) 0.270

Murata GRM21BC71J475KE11L 50 125 0805 (2012) 0.400

UCC KVF500L475M55NHT00 50 150 2220 (5750) 1.580

Note: Packages are given as inch code (metric code).

None of the capacitors given in Table 16 had datasheets which listed thermal data,
and only the UCC capacitor datasheet included ripple current rating information.
However, it is anticipated that the relatively wide margin of 50 ºC above ambient
for the absolute maximum operating temperature will be sufficient. If desired, a
wider margin of 75 ºC is possible with a capacitor rated for 150 ºC, but this added
tolerance comes at a significant price increase—nearly 4× the cost of the most
expensive capacitor listed in the table with a 125 ºC rating, and over 8.3× the cost
of the least expensive capacitor in the table.

Any device in Table 16 is suitable, and so the least expensive can therefore be
selected for use in the fan controller.

Tachometer interface

Fans of the 3- and 4-pin variety provide a tachometer for use in monitoring the
speed of the fan. The tachometer is specified as an open-collector or open-drain
output, meaning that the output is connected to ground through a transistor and
that, when the transistor is not switched on, the output is left to float. Hence, the
specification for 4-pin fans requires that a resistor to pull the voltage up to 12 V
be included (Intel Corporation, 2005a, p. 9).

If a pull-up to 12 V were to be used, the tachometer and the microcontroller could
not be directly connected—the development kit microcontroller’s pins are rated
for a maximum voltage not greater than 0.3 V above the microcontroller supply
voltage, which equates to an absolute maximum voltage of 4.1 V (Silicon Labs,
2014b, p. 10). In order to connect the two without damaging the microcontroller,
a level shifter would need to be placed between the microcontroller pin and the
pulled-up tachometer signal. Any selected level shifter would be required to

54 of 304 Liam McSherry
 EC1520839

operate at the minimal current permitted through the pull-up resistor.

Alternatively, the tachometer pull-up could be connected to the 3.3 V supply pin
available from the development kit. This would permit direct connection from
the tachometer to the microcontroller, but would mean noncompliance with the
fan specification. Although no potential issues are foreseen as a result of using a
pull-up to a lower voltage, specification compliance is a higher priority than the
marginal reduction in cost from not using a level shifter.

In selecting an appropriate level shifter, a simple parametric search was found to
be unsuitable—neither of the online parts retailers consulted permitted searching
by the direction of shifting (i.e. high-to-low or low-to-high), nor by whether any
precise ordering in the connection of supplies was required (a common property
of level shifters). Instead, a parametric search was used to identify level shifters
with sufficient voltage ratings (i.e. 12.6 V, with no further margin of safety as the
maximum voltage is specified by the PCI-SIG (2008)), and a manual evaluation of
the results is made later in this section. Other than isolators, the only devices
revealed by the search as being able to translate voltages of up to 12.6 V were
various logic devices—specifically, the 744050, 4104, 4504, and 40109.

Isolators are generally intended for safety applications, and have a number of
different operating models. Opto-isolators use light shone onto a photosensitive
transistor to transmit a signal from one circuit to another, while magnetic isolators
use a miniature transformer in combination with edge-detecting logic. Other
types of isolator transmit signals using radio emissions (Krakauer, 2011). Complex
construction and certification for use in safety-critical applications mean that an
isolator will generally be more expensive than a level shifter—indeed, the least
expensive isolator of those stocked by two online parts retailers was listed at a
price of £0.59 in single quantities. Comparatively, the least expensive level shifter
provided was listed at a price of £0.26 in single quantities. Each provided only a
single input–output pair. Isolators, then, can be discounted unless there exists no
level shifter capable of the translating the same voltage levels.

The 744050 is a “hex non-inverting buffer” capable of both low-to-high and high-
to-low level shifting. High-speed CMOS versions (the 74HC4050) operate from a
supply voltage of 2–6 V, but are rated for input voltages up to 15 V. A downside to
this device is that, while it may be appropriately rated, the device package may
cause issues in layout—each input pin is adjacent to its corresponding output, and
so with any considerable number of connections it is likely that one wire would
need to cross another. This is not a huge issue, but could consume more valuable
circuit-board space than may be desirable (Texas Instruments, 2005a). This
device is not to be confused with the 4050—the 4050 requires a 3–15 V supply,
and is therefore less desirable where a 3.3 V supply may be the primary supply in
use.

The 4104 is a “quad low-to-high voltage translator with 3-state outputs.” It is able
to translate voltages up to 15 V, but only in the low-to-high direction—a 4104-
type device datasheet notes that the input supply VDD(A) “must always be less than
or equal to [the output supply] VDD(B), even during power turn-on and turn-off”
(Nexperia, 2016c). This device is therefore unsuitable for use in this application.

The 4504 is a “hex non-inverting level shifter for TTL-to-CMOS or CMOS-to-
CMOS." It can be used in either the high-to-low or low-to-high directions, and is

Liam McSherry 55 of 304
EC1520839

rated for a 3–18 V supply voltage. Unlike the 744050 and 4104, the 4504 includes
a mode selector (TTL–CMOS or CMOS–CMOS), which adjusts the tolerances of
logic-high and logic-low voltages. For example, at 25 ºC with an input supply VCC
of 5 V and output supply VDD of 15 V, the maximum logic-low voltage is specified
as 0.8 V when the device is in TTL–CMOS mode and 2.25 V when in the CMOS–
CMOS mode (ON Semiconductor, 2014). As before, the device’s requirements for
the supply voltage may make the device less desirable as a result of the relatively
tight margin between its 3 V minimum and the available 3.3 V-nominal supply.

The 40109 is a “quad low-to-high voltage level shifter” which can also operate as
a high-to-low shifter. As the datasheet specifies, “[the input supply voltage] VCC
may exceed [the output supply voltage] VDD, and input signals may exceed VCC and
VDD. When operated in the mode VCC > VDD, the CD40109 will operate as a high-
to-low level shifter.” The 40109 does require that any input signal have a voltage
of at least 0.7× VCC, but otherwise there are “no restrictions on the relative
magnitudes or input signals within the device maximum ratings.” Further, unlike
the 4104, there is no requirement for the supplies VCC and VDD to be connected in
a specific order. Given that the maximum supply voltage rating is 18 V, the 40109
could be used as a high-to-low 12 V–3.3 V level shifter. However, as with the 4050
and 4504, the minimum recommended supply voltage of 3 V leaves little margin
with the available 3.3 V supply (Texas Instruments, 2003). This makes the device
less desirable as a choice but, as before, does not necessarily preclude its use for
this application.

The choice of level shifter is then a choice between the 744050, the 4504, and
the 40109. The 744050 is the most favourable option, offering the best tolerance
for supply voltages for this application. The input voltage tolerances for the three
devices are largely similar, at 15 V for the 744050 and 18 V for the 4504 and 40109.
Unless it is significantly more expensive or significantly harder to procure than
either of the 4504 or 40109, it is expected that the 744050 will be selected for use
in the fan controller. To assess cost and availability, a search of the stock of two
online parts retailers was made for 744050-, 4504-, and 40109-type devices. The
results of the search are given in Table 17.

Table 17

Cost and availability of various level shifters

Part No. Retailer 1 Retailer 2

Units Cost (£) Units Cost (£)

TI CD40109BPWR 7363 0.310 2825 0.306

Toshiba 74HC4050D 4302 0.310 3654 0.474

TI CD74HC4050M96 17676 0.340 9226 0.329

Nexperia 74HC4050PW 4084 0.340 4539 0.337

TI CD4504BM96 25442 0.340 11414 0.337

ON MC14504BDG 1495 0.800 6810 0.819

Note: The “units” columns are the number of units the retailer listed as being ready to ship or
ready for immediate dispatch on the day the search was made.

As can be seen, there is little real difference in price between the 744050, 4054,

56 of 304 Liam McSherry
 EC1520839

and 40109. As a result of its being more favourable in comparison to the other
devices, the 744050 is selected as the device type, and the Texas Instruments
CD74HC4050M96 (or equivalent) is selected as the particular make and model
for use in the fan controller as a result of its pricing and availability.

Fan PWM interface

The speed of a fan of the 4-pin variety is controlled by varying the duty cycle of
a PWM signal transmitted down the fourth fan pin. A fan is required to provide
an internal pull-up to a voltage not exceeding 5.25 V, and a fan controller is to
control the fan by providing an open-collector or open-drain output. This output
must tolerate a minimum of 5 mA, with a recommended 8 mA tolerance. While
an open-drain or open-collector output would pull the signal to ground, the
specification states that the “signal is not inverted” and that “100% PWM results
in max fan speed.” This likely indicates that the fan includes the necessary logic
to convert the signal as required, but whether this holds true should be confirmed
by practical experiment (Intel Corporation, 2005a, pp. 9–10).

As established in the Tachometer interface section above, the microcontroller to
be used in the fan controller is able to tolerate, under specific circumstances, an
absolute maximum input voltage of 4.1 V. As a fan is permitted to pull the voltage
up to 5.25 V, a microcontroller pin cannot be used directly. Instead, a further
transistor must be used to provide a 5.25 V-tolerant open-collector or open-drain
output. Although not the most economical option, no practical reason precludes
the use of the Fairchild FDMS7682 selected earlier in chapter 10.2.

As established in chapter 10.2, the FDMS7682 has an RDS(ON) of 15.2 milliohms at
an approximate gate–source voltage of 3.5 V. Using the power calculations in that
chapter (where the frequency fSW is taken as 28 kHz, the maximum acceptable
fan PWM frequency), the resistive power dissipation in the transistor would be
ILOAD²RDS(ON) = 0.008²(15.2×10−³) = 0.973 μW. The switching loss in the transistor is
CRSSVIN²fSWILOAD/IGATE = (75×10−¹²×5.25²×28×10³×8×10−³) / (5×10−³) = 92.6 μW, for a
total dissipation equalling 0.973 μW + 92.6 μW = 92.7 μW. Taken together with
the 125 ºC/W thermal resistance when the device is not mounted on a copper
pour heatsink, the expected temperature rise above ambient is less than a tenth
of a degree Celsius.

Power connector

There must be a connector for supplying power to a connected fan, and while the
selected PCI-E auxiliary power connector would provide sufficient power, it
would not be the most suitable connector for a prototype. The connector for use
in a prototype should enable the connection of almost any variety of supply, and
hence a suitably-rated screw terminal should be used. A screw terminal requires
only that a wire be connected and held in place by a screw, and so any power
supply can be used—either directly if the supply also uses a terminal accepting a
bare wire, or indirectly via a “crocodile clip” or similar connector with one end
of the wire in the screw terminal and the other in the clip’s jaws.

The same ratings as for other components apply largely unchanged to the power
connector, except that the rated current must be doubled and the voltage rating
need only be the maximum supply voltage plus a 50% margin of safety
(12.6×1.5 = 18.9 V). The two aspects to be investigated require separate circuit
configurations, and so the connection of two fans at once to the prototype board

Liam McSherry 57 of 304
EC1520839

is likely to be possible. The connector must therefore be rated to carry the current
necessary to concurrently power to fans—6.6 A. In addition, the search was
limited to two-position terminals. Using these parameters, a parametric search of
two online parts retailers was made. The results are given in Table 18.

Table 18

Shortlist of proof-of-concept prototype screw terminals

Part No. VMAX (V) IMAX (A) Cost (£)

Altech MBES-152 300 10.0 0.214

TE Connectivity 1776493-2 300 10.0 0.253

Phoenix Contact 1792863 400 12.0 0.310

Wurth Electronics 691137710002 300 16.0 0.380

On Shore Technology OSTTE020161 250 16.0 0.670

Amphenol VI0201550000G 300 16.0 0.750

Molex 0398890042 300 17.5 0.900

As can be seen, there is insignificant variation across a range of manufacturers
and prices. As each is rated well above the supply voltage and considerably above
the maximum supply current, the use of any connector given in the table is
therefore suitable. The least expensive option may be passed over for a more
expensive option from a larger manufacturer, as this would likely aid the ability
to order in volume and decrease the likelihood of abrupt discontinuance of the
connector.

Supply-monitoring transducers

In order to adjust the voltage supplied to a fan more accurately, to provide status
updates to the host computer, and for reasons of safety, the fan controller must
have means to monitor the voltage and current supplied to each fan. Voltage
monitoring is relatively simple—the appropriate point in the circuit is connected,
whether or not through a potential divider, to an analogue-to-digital converter.
This converter then produces a value representing the voltage, which can be used
directly in firmware.

Current sensing is not as straightforward—while monolithic current transducers
are available, they are available at considerable cost. The least expensive current
transducers stocked by two online parts retailers were priced at £1.39 (Allegro
ACS711KEXLT-31AB-T) and £2.70 (Melexis MLX91209CA), respectively. A less
expensive method is the use of a so-called “sense resistor,” where the voltage
across a low-value resistance in series with the load is measured. With the known
resistance and the measured voltage, the current can be found per Ohm’s law. In
contrast to the monolithic current transducers mentioned above, the least
expensive current-sense op-amps stocked by the same two online parts retailers
were priced at £0.450 (TI INA180A2IDBVT) and £0.437 (Silicon Labs Si8540).

In terms of microcontroller resources, these monitoring capabilities are relatively
expensive—to measure the analogue voltage produced by the transducer or op-
amp, an analogue-to-digital converter (ADC) is required. This would mean that,

58 of 304 Liam McSherry
 EC1520839

on a final prototype, at least eight ADC channels are required (two per fan, one
of which is for current and the other for voltage). The EFM32WG990 controller
on the development kit provides an eight-channel ADC, and so there would be
no ADC channels available for other inputs without further external multiplexing.

However, this use of microcontroller resources would remain the same whether
a monolithic transducer or current-sense op-amp were used, and so any choice
must be based on the monetary cost of the monitoring technique. As established,
the use of a current-sense op-amp is likely to be less expensive, and so it is a
current-sense op-amp which is to be used. In selecting an appropriate part, there
are relatively few criteria—the op-amp must accept a supply voltage available on
the prototype, it must output a voltage within the acceptable range for the input
pins on the microcontroller, and it must be capable of measuring currents of
either the range 0–3.3 A (if attached only to a single fan) or 0–6.6 A (if used to
measure the total current supplied). As there are no other distinguishing factors,
the least-expensive device with suitable ratings can be selected.

As the difference in pricing was minimal, and both retailers stocked this device,
the Texas Instruments INA180A2IDBVT is selected for use.

For voltage monitoring, any suitable combination of resistors giving the correct
ratio for potential division may be selected. Given that the fan supply voltage is
not expected to exceed 12.6 V and given that the nominal supply voltage for the
microcontroller is 3.3 V, a ratio of the fan supply to microcontroller supply
voltages (that is, 12.6:3.3 = 3.82:1) would—considering that the minimum voltage
for the microcontroller to register a logic high is 0.7 V—enable measuring a fan
voltage in the approximate range 2.67–12.6 V. While it is unlikely that a resistor
that is a multiple of 3.82 will be found, 3.83 is in both the E48 and E96 standard
series of resistors, and so a 3.83:1 ratio is possible (BSI, 2015). Provided that a ratio
places the resultant voltage within the tolerable range and limits current
sufficiently, the precise choice of values is unimportant—the microcontroller
included with the development kit has a floating-point unit (FPU), and so there is
little downside to using values which do not divide as cleanly. Using a 38.3
kiloohm and 10 kiloohm pair of resistors, the divider would be capable of safely
measuring fan voltages in the range 2.68–12.64 V. The datasheet for the
EFM32WG990 microcontroller used in the development kit (Silicon Labs, 2014b)
does not specify a maximum input current, and so it is important that an
especially conservative level be permitted. If resistors of 40 and 10 kiloohms
were chosen, the maximum current into the pin would be 261 μA at 12.6 V. It is
expected that this will be sufficiently low so as not to result in damage.

Temperature sensor

While the primary purpose of the proof-of-concept prototype is to enable testing
of aspects of the final design, the inclusion a temperature sensor would result in
the prototype largely mirroring the expected functionality of the final design. At
minimal additional cost, the prototype could then be used as a platform for the
development of the firmware and software for the controller, potentially saving
time. Inclusion therefore makes practical and economic sense.

However, a simple temperature sensor which produces an analogue voltage
output (such as a thermocouple) would require a further ADC input channel. As
was established in Supply-monitoring transducers above, the final design will

Liam McSherry 59 of 304
EC1520839

require eight ADC channels (the maximum provided by the microcontroller) and
so a device which would require a further channel cannot be included. The
microcontroller does include an internal sensor for the ADC, but this would read
the temperature of the microcontroller rather than the temperature of the
environment (Silicon Labs, 2014a, p. 692). The solution is, then, the use of a
digital-output temperature sensor—specifically, the use of an I²C temperature
sensor, as a connection to an I²C function is available from the development kit
expansion header. To select an appropriate device, a parametric search of the
stock of two online parts retailers was performed for a device which could
communicate using an I²C connection, which could be powered from a 3.3 V
supply, and which came in a surface-mount style package. The results are given
in Table 19.

Table 19

Shortlist of proof-of-concept prototype I²C temperature sensors

Part No. Range (ºC) Accuracy (Typ.) Cost (£)

Maxim DS75U-C12 −55–125 ±3.0 ºC 0.490

Microchip/Atmel AT30TS74-SS8M-T −55–125 ±2.0 ºC 0.513

NXP PCT2075TP,147 −25–100 ±1.0 ºC 0.530

Microchip/Atmel AT30TS74-XM8M-B −55–125 ±2.0 ºC 0.551

NXP LM75ADP,118 −55–125 ±3.0 ºC 0.600

ST STLM75M2F −55–125 ±0.5 ºC 0.690

Microchip MCP9844T-BE/MNY −40–125 ±1.0 ºC 0.750

TI TMP103AYFFR −40–125 ±1.0 ºC 0.880

Silicon Labs Si7050-A20-IM −40–125 ±1.0 ºC 0.896

Silicon Labs Si7051-A20-IM −40–125 ±0.1 ºC 1.820

In order to select the most economical temperature sensor, a score for each was
computed by having the score increase with widening range and improving
accuracy and decrease with cost. The Silicon Labs Si7051 device had the largest
score (17.170), followed by the NXP PCT2075TP (at 7.547). While the Si7051 offers
considerably greater accuracy, it is unlikely that accuracy better than 1.0 ºC will
be required, and so the NXP PCT2075TP is selected.

Fan connector

There is little selection involved for the fan connectors—as well as specifying the
dimensions of the header, the specification for 4-pin fans also lists a number of
known-compatible parts (Intel Corporation, 2005a, p. 19). The connectors for 2-
and 3-pin fans are known to be compatible with the connector for 4-pin fans (per
chapter 5.1). All that is required is then to search the stock of online parts retailers
for the part numbers listed in the specification. The results of this search are given
in Table 20.

60 of 304 Liam McSherry
 EC1520839

Table 20

Fan header pricing

Part No. Cost 1 (£) Cost 2 (£)

Foxconn HF27040-M1 — —

Tyco 1470947-1 — —

Wieson 2366C888-007 — —

Molex 47053-1000 0.320 0.337

Only the Molex 47053-1000 connector was stocked by the two online parts
retailers the stocks of which were searched. While it would be preferable to have
multiple known-compatible parts available, Molex is a company of considerable
size and the Molex part is available from both retailers. There are unlikely to be
concerns over the availability of parts, and so the 47053-1000 can be selected as
the fan header for use in the fan controller.

Expansion header

There is also little selection involved for an appropriate female counterpart for
the development kit’s expansion header. Any header with 20 connections split
into two rows of ten where the connections are 100 mil (2.54 mm) apart may be
selected.

The Sullins Connector SFH11-PBPC-D10-RA-BK was selected as it was available
from the prototype assembly house and was inexpensive (£1.07 in single units).

14.2 Microcontroller connection
The development kit to hand exposes a number of the pins of its microcontroller,
both through bare conductive “breakout” pads and through a pin header. For ease
of connection, the pin header is the most suitable choice for the connection of
the development kit to the prototype board—no soldering is involved, the header
provides a robust and secure means of connection, and the de facto standard pin
pitch20 of 100 mil (2.54 mm) means that counterpart female headers are likely to
be widely available at low cost.

Each of the pins exposed (with the exception of the power pins) is multifunction,
and firmware on the microcontroller can adjust the function assigned to the pin,
but only a limited number of functions are available on any given pin. To ensure
that the prototype can be correctly controlled, it is therefore necessary to have
an exhaustive list of all required functions which can be cross-referenced with a
list of all available functions. This exhaustive list then enables a correct scheme
for connecting the microcontroller to the prototype to be produced before any
physical circuit is designed.

The following functions are required for the prototype:

■ Four PWM functions—two to be connected to the PWM control inputs for
each fan connected to the prototype, one connected to the gate of the
control transistor for the PWM DAC, and one connected to the gate of the

20 “Pitch” refers to the distance between the centre points of each pin.

Liam McSherry 61 of 304
EC1520839

transistor used to directly modulate the supply voltage for the fan without
the PWM DAC connected to it.

■ Four ADC channels—two channels per fan, where for each fan one channel
is to be used to measure the voltage provided to the fan and the other is to
be used to measure the current (via a current transducer).

■ Two pulse-counter functions—one for each of the fan tachometer output,
although it would be possible to use a general-purpose pin instead. A pulse-
counting function is preferable as it enables counting to be done by an
autonomous peripheral and without CPU intervention, which is likely to
reduce the complexity of device firmware.

■ One I²C function—to be used for the connection of a temperature sensor.

Using tables 4.1 and 4.2 of the datasheet for the EFM32WG990 microcontroller
on the development kit (Silicon Labs, 2014b, pp. 58–70) with table 9.1 and
figure 9.2 of the user manual for the development kit (Silicon Labs, 2013d, pp. 16–
18), the pins available to the prototype can be mapped against the list of required
functions above. This map is provided in Table 21.

Table 21

Map of required pin functions to available pins

MCU Pin Header Pin PWM ADC PCNT

PB11 11 2, 3 — —

PB12 13 3 — —

PC0 3 1 — 1

PC3 5 — — —

PC4 7 3 — 2

PC5 9 3 — —

PC6 15 — — —

PD0 4 — 1 3

PD1 6 1 1 —

PD2 8 1 1 —

PD3 10 1 1 —

PD4 12 — 1 —

PD5 14 — 1 —

PD6 16 2, 3 1 1

PD7 17 2 1 —

Note: The PWM function numbered 3 is provided by the low-energy timer (LETIMER).

It can be seen that there is minimal overlap between functions. Accordingly, for

62 of 304 Liam McSherry
 EC1520839

the PWM functions pins PB11, PB12, PC0, and PD7 are preliminarily selected;21
for the ADC functions, pins PD1 through PD4 are preliminarily selected; for the
pulse-counting functions, pins PD0 and PD6 are preliminarily selected; and for
the I²C functions, pins PC4 and PC5 are preliminarily selected. It may be the case
that these pin selections inconvenience routing signals on any circuit board
design, in which case these preliminary selections may be adjusted.

14.3 Hardware design rationale
Appendix F2 contains the schematic diagrams representing the design of the
proof-of-concept prototype, and Appendix F3 contains the circuit designs
produced from the schematic diagrams in Appendix F2. Appendix F4 contains
photographs of the manufactured circuit board.

Where it has been considered necessary or helpful, the rationale for certain
decisions made in producing those diagrams and designs has been included in this
section. An effort has been made to keep each rationale brief, and to keep all of
the more detailed hardware selection within chapter 14.1.

Where possible, each of the rationales given in this section is given in the same
order as the relevant portions of the schematic diagrams appear.

Locations in schematics are given as the sheet, column, and row. For example, on
sheet five (5) the third (3) column and first (A) row would be 5.3A.

MOSFET gate resistor

The 470-ohm value for the resistors connected between the microcontroller and
the MOSFET gate was selected to limit the current to the 5 mA drive current used
in calculations in chapters 10.2 (p. 38) and 14.1 (p. 56) when the microcontroller
output voltage is at the minimum 0.8× supply voltage permitted whilst configured
to source a current of 20 mA with a 3.0 V supply (Silicon Labs, 2014b, p. 20).

While the 470-ohm value would result in 5.1 mA being sourced at 0.8×3.0 V and
up to 7.02 mA being sourced at 3.3 V, neither value is outside the rated source
current of the microcontroller pins, and neither is expected to adversely impact
the heat dissipation of the MOSFETs. Any resistor selected for use must be rated
to dissipate at least 24 mW.

Schematic locations 2.4B, 2.5C, 3.4C, and 3.5B.

PWM DAC voltage transducer

The voltage transducer for the PWM DAC is not connected between the 12 V
input of the fan and ground, but between the 12 V input of the fan and the point
between the PWM DAC’s filter capacitor and filter inductor. This mirrors the
connection of the fan itself, as the fan is connected to ground through the filter
and not directly. As measuring the voltage across the fan requires use of the same

21 It should be noted that PB12 and PD7 are different output channels for the same timer,
and so cannot be configured to provide differing-frequency PWM output (although the
duty cycle remains independently configurable). However, as the channels are used in the
control of separate fan connections and as simultaneous control of multiple fans is not
required in the prototype, this is immaterial.

Liam McSherry 63 of 304
EC1520839

reference, the voltage transducer must also be connected in this way.

The same is not true of the bare fan connection, as its connection to ground (i.e.
through a transistor) is, for this purpose, effectively the same as if it were directly
connected. Connection through a transistor does mean that the transducer is not
guaranteed to produce an accurate 0 V reading when the transistor is switched
off, but the transistor being switched off removes any need for a voltage reading
and so this effect is inconsequential.

Schematic location 2.2B.

Current-sense resistor

The current-sense resistor was chosen in accordance with section 9.1.2 of the
datasheet for the INAx180 series of devices (Texas Instruments, 2017), which
provides an equation to calculate the maximum value of the resistor RSENSE given
a maximum permitted power dissipation, and two equations for verifying that any
chosen value is suitable for use.

The first equation is a simple rearrangement of Joule’s law P=I²R which, given a
maximum resistor power dissipation of 125 mW (a common value) and a load
current of 3.3 A, indicates that the resistor cannot exceed 11.5 milliohms.

The other two equations are used to verify that the op-amp remains within its
maximum output voltage swing range.22 All devices in the INAx180 series are
specified as having a maximum positive swing of 30 mV below supply, and a
minimum negative swing of 5 mV above ground. The equations depend on the
gain of the amplifier, which is listed as 50 for INAx180A2 devices (Texas
Instruments, 2017, p. 6). Taking a value of 10 milliohms with a maximum load
current of 3.3 A and a minimum load current of 25 mA (half of the minimum listed
in Table 4), the equations indicate that a maximum positive swing of 1.65 V and a
minimum negative swing of 12.5 mV will be produced. A 10-milliohm resistor is
therefore a suitable choice for a current-sense resistor, provided that it is rated
to dissipate at least 109 mW.

Schematic locations 2.3C and 3.2B.

MOSFET copper pours and stitched vias

In the circuit design, transistors M1 and M3 (those being the transistors which are
connected in series with the fans and which switch to ground) are mounted on
copper pours of approximate area 1 in² with vias23 to ground around the edge.

The copper pour is recommended in the datasheet for the FDMS7682 to lower
the junction–air thermal resistivity to 50 ºC/W, and is necessary for operation at

22 That range being the maximum range of voltages which “can be obtained without
waveform clipping…” (Karki, 1998) or, to rephrase, the maximum and minimum voltages
which the op-amp can produce on its output.
23 A via being a hole in the circuit board that is plated on its inner surface. Vias enable a
signal to be routed across multiple layers of a circuit board.

64 of 304 Liam McSherry
 EC1520839

the power levels determined in chapter 10.2 (Fairchild, 2015a).

The vias serve multiple purposes—first, they provide an electrical connection to
ground for the transistor; second, they thermally connect the copper pour
heatsink to the ground pour, which should aid in removing heat from the device;
and third, they act as a crude Faraday cage to mitigate noise transmission to or
from the transistor.

14.4 Firmware
Program specification

Microcontroller firmware is required to operate the proof-of-concept prototype
circuit. The firmware must have at least three modes of operation, as follows:

14.4.1 A mode where the fan connected via the PWM DAC is powered and the
duty cycle of the signal into the PWM DAC can be varied. The variations
may be fixed or determined by user input, and must minimally consist of
a variation with a duty cycle of 100% and a variation with a duty cycle of
less than 100%. The firmware must alternate between variations in
response to user input.

14.4.2 A mode where the fan connected to the bare fan connection is powered
and the supply line to the fan is modulated by PWM, where the duty
cycle can be varied as in mode 14.4.1.

14.4.3 A mode where the fan connected to the bare fan connection is powered
and the PWM control line to the fan is modulated by PWM, where the
duty cycle can be varied as in mode 14.4.1.

The firmware must alternate between these modes in response to user input.

The firmware must report, on the development kit LCD or by other means, the
current mode and duty cycle.

Design and source code

Appendix F5 contains resources and discussion produced in designing firmware
for the proof-of-concept prototype. Appendix C2 contains source code for the
firmware produced from the resources and discussion in Appendix F5.

Interrupt dependencies

Interrupts24 on the microcontroller on the development kit generally require that
the functions of generating an interrupt service request and servicing a request
are configured separately—for example, a timer must be configured to generate
a request at the expiry of a specified period, and the microcontroller’s nested
vectored interrupt controller (NVIC) must be configured both to acknowledge
such requests and with information about a relevant service routine (Silicon Labs,
2014a, p. 13).

24 An interrupt is an indication to the processor that an event external to the processor has
occurred, or that a system external to the processor requires attention. A processor will
generally respond to an interrupt request by pausing normal code execution and switching
to an interrupt service routine. Once the interrupt request has been serviced, the processor
returns to normal code execution.

Liam McSherry 65 of 304
EC1520839

The NVIC is a standard part of the ARM Cortex-M4 processor architecture used
by the microcontroller, and is more fully described in the Cortex-M4 Devices
Generic User Guide (ARM, 2010, ch. 4). Briefly, the NVIC supports selectively
enabling and disabling interrupts, assigning interrupts a priority level (to enable
the most important of a set of simultaneous interrupts to be serviced first), and
both level-sensitive and pulse interrupt request signals. Interrupts can also be
triggered by the firmware executing on the device,

This section serves as a reference for the interrupts required in the firmware (see
chapter 14.2 for some sources), and lists the relevant interrupt request source, the
NVIC interrupt number, and the source-specific registers for the configuration of
interrupts for the given interrupt request source. This list is given in Table 22.

Table 22

Microcontroller interrupt dependencies

Peripheral NVIC No. MCU Registers

USB 5 USB_CTRL, USB_STATUS

I²C Bus 1 10 I2C1_CTRL, I2C_CMD,

I2C1_STATE, I2C1_STATUS

Timer 2 13 TIMER2_CTRL, TIMER2_CMD,

TIMER2_STATUS,

TIMER2_TOP, TIMER2_CNT

Pulse Counter 0

Pulse Counter 2

27

29

PCNTn_CTRL, PCNTn_CMD,

PCNTn_STATUS, PCNTn_CNT,

PCNTn_TOP

The registers listed in Table 22 are only registers which relate directly to interrupt
generation by the peripheral—including the register which is used to enable the
peripheral—and do not list other registers related to the general configuration of
the peripheral (such as the timer’s period or the pulse counter’s overflow value).

Note that numerous other registers exist for each of these peripherals (the USB
peripheral, for example, has a total of 83 registers). A full listing of registers for
each peripheral is provided in the reference manual section for that peripheral.

Clock dependencies

The microcontroller on the development kit is intended for uses with a need for
low energy consumption—in its second-lowest energy mode, it is rated to draw
as little as 0.65 μA from the supply. In keeping with this, the microcontroller can
individually enable and disable most peripherals and hardware devices. In order
to use the peripherals (including those set out in chapter 14.2), the clocks for each
peripheral must be enabled first. This section serves as a reference of the clocks
required for each peripheral used in the firmware to function.

Table 23 lists the peripheral, the primary clock source, any secondary clock
source, and the registers relevant in the configuration of those clocks.

Secondary clock sources are driven by primary clock sources, but may be divided
to a slower clock rate. Each peripheral may have its own individual clock source

66 of 304 Liam McSherry
 EC1520839

driven by a primary or secondary clock source.

Table 23

Microcontroller peripheral clock dependencies

Peripheral Primary Secondary MCU Registers

Timers 0–3 HFPER — TIMERn_CTRL,

CMU_CTRL,

CMU_HFPERCLKDIV,

CMU_HFPERCLKEN0

Low-energy
timer 0

LFRCO
LFXO
HFCORE
ULFRCO

LFA CMU_LFCLKSEL,

CMU_LFACLKEN0,

CMU_LFAPRESC0

ADC 0 HFPER — ADC0_CTRL, CMU_CTRL,

CMU_HFPERCLKDIV,

CMU_HFPERCLKEN0

Pulse Counter 0

Pulse Counter 2

LFRCO
LFXO
HFCORE
ULFRCO

LFA CMU_PCNTCTRL,

CMU_LFCLKSEL,

CMU_LFACLKEN0,

CMU_LFAPRESC0

I²C Bus 1 HFPER — I2C1_CLKDIV,

CMU_CTRL,

CMU_HFPERCLKDIV,

CMU_HFPERCLKEN0

GPIO HFPER — CMU_CTRL,

CMU_HFPERCLKDIV,

CMU_HFPERCLKEN0

LCD LFRCO
LFXO
HFCORE
ULFRCO

LFA CMU_LFCLKSEL,

CMU_LFACLKEN0,

CMU_LFAPRESC0

— LFALCD
25 CMU_LCDCTRL

DMA26 HFCORE — CMU_HFCORECLKDIV,

CMU_HFCORECLKEN0

USB HFCORE — CMU_HFCORECLKDIV,

CMU_HFCORECLKEN0

Each primary source is driven by an oscillator. The available oscillators are listed
in the microcontroller family reference manual, and are connected in a complex
topology with each of the primary clocks (Silicon Labs, 2014a, p. 126). Oscillators

25 The LCD framerate is the frequency produced by the further division of LFALCDpre (the
clock divided from LFA and provided to the LCD controller). Its configuration registers are
separate from those for the LCD controller clock.
26 Direct memory access (DMA) allows peripherals to read from and write to the
processor’s RAM directly, without the processor’s intervention.

Liam McSherry 67 of 304
EC1520839

are enabled and disabled using the CMU_OSCENCMD register.

Note that low-energy peripherals also require the CMU_HFCORECLKEN0 register to
have the LE bit set, as this clock is used for bus access (Silicon Labs, 2014a, p. 148).

Testing and verification

Appendix F6 contains a test plan which briefly sets out the considerations made
in testing the proof-of-concept prototype and its firmware, and gives instructions
for testing the prototype. The instructions are organised into discrete action
items, and brief explanatory notes are provided for each action item.

Appendix F7 provides a description of all procedures performed in carrying out
the action items, results of those procedures, observations made, and discussion
related to the procedures and, where necessary, future actions.

15. Ancillary prototypes
The purpose of the proof-of-concept prototype, as noted in chapter 14, is to
enable practical testing of two specific aspects of the controller. While designed
with the testing of other aspects of the controller in mind—for example, by the
inclusion of a temperature, current, and voltage transducers—connection of the
proof-of-concept prototype to the development kit cannot occur until the safety
of such a connection has been verified.

However, while connection cannot occur before safety is verified, it is also true
that the development of other controller functionality cannot wait until safety is
verified. In order to ensure that the functionality is completed in time, a number
of ancillary prototypes—primarily consisting of software and firmware—are to be
developed as discrete units. These units, while separate from the firmware which
is to drive the proof-of-concept prototype, are to be developed so as to enable
easy integration with that primary firmware. This separation also has the
advantage of making easier the testing of the firmware and software by reducing
the possible test surface for any one component.

These units, each an ancillary prototype, are to demonstrate:

■ The viability of USB as a means of communications, the work necessary to
implement USB communication on the sides of both the controller and the
host computer, and the suitability of the protocol referenced in chapter 13.

■ The use and methods of data acquisition, and the application of acquired
data in the control of fans.

This chapter covers the design and development of each ancillary prototype.

15.1 USB prototype
One of the core features, and one of the distinguishing features, of the controller
design is the use of USB to communicate with the host computer for configuration
and status reporting. However, USB is not especially simple, and so it is necessary
to split USB functionality into a separately testable, separately demonstrable unit.
Any issues in the development of the USB demonstrator will then not impede the
testing of other portions of the project.

As outlined in the introduction to this chapter, this prototype is to demonstrate

68 of 304 Liam McSherry
 EC1520839

the viability of using USB, what is necessary to implement USB, and the suitability
of the protocol specified as part of the project. Potentially conspicuous by their
absence, no requirements relating to fan control are present. This is intentional,
as such requirements would not aid in demonstrating the use of USB or the use of
the protocol.

General structure

The USB prototype is to consist of two main components—the firmware, present
on the development kit and acting as the USB device; and the software, which is
to run on a typical computer and provide a user interface to the device.

In a final design, the software would expose a number of settings configurable by
the user, and would communicate those settings—using facilities provided by the
operating system—over USB to the firmware. The firmware would then process
the communication, validating it where appropriate, and act on the information
as necessary. This action, for example, could be the adjustment of the speed of a
fan, a request for current status data or sensor read-outs, or an instruction for the
device to enter programming or firmware upgrade mode.

Requirements specification

The USB prototype is to consist of both firmware and software, and so a single
program specification is not appropriate. While two program specifications could
be provided, the simpler and more concise option is to provide an overarching
requirements specification covering both firmware and software.

The USB prototype must consist of:

15.1.1 A software component which displays the fan status reported by the fan
controller; which enables the user to instruct the fan controller to adjust
the current state of the fan; and which does so in implementation of the
device class specification contained in Appendix D.

15.1.2 A firmware component which implements the device class specification
contained in Appendix D; and which displays a visual indication on each
instruction by the software component (for example, by the display of
text on an LCD, and without the need for the firmware to implement fan
control routines).

15.1.3 A hardware component (including a processor on which the firmware is
to execute) which is to be connected over USB to the host computer.

In addition, the firmware component specified in requirement 15.1.2 should be
developed, as far as is practical, with regard to the aim of integrating the firmware
component with the firmware produced for the proof-of-concept prototype.

Design and source code

Appendix G1 contains resources produced in designing the USB prototype, and
discussion about relevant considerations made. Source code for the prototype is
contained in Appendices C3 (for the firmware) and C4 (for the software).

Interrupt and clock dependencies

Refer to Table 22 and Table 23 in chapter 14.4 for information and discussion on

Liam McSherry 69 of 304
EC1520839

general interrupt and clock dependencies.

15.2 Sensors prototype
In order to properly control a fan, the fan controller must have information about
it, and that information must be gathered from sensors and transducers in the fan
or the controller. The proof-of-concept prototype firmware largely focused on
demonstrating the viability of methods of control of a fan, without including any
functionality for responding to changes in environment. It is necessary, then, to
demonstrate or consider that aspect of the fan controller.

Due to time constraints, it was not expected that there would be suitable time to
design, produce, and test a sensors prototype, and so instead it will be considered
what might be necessary to produce a sensors prototype.

This consideration is contained in Appendix G2.

16. Production design
The proof-of-concept and ancillary prototypes, while they provided insight into
what would be necessary or desired in producing a final design, did not fulfil the
aim of the project. The focus of these prototypes was on investigating or testing
one or more specific aspects of the design of a fan controller, and not on what
might be needed in a design for commercial or volume production.

To fulfil the aim of the project, this chapter will consider the information and the
knowledge gained in implementing the prototypes in conjunction with what is
considered best practice or what is required by standard or specification, and will
hence make recommendations about a final design for a fan controller.

The first sections of this chapter are given in the same order as the chapters of
the Research and Theory partition.

16.1 Computer fans
In implementing and testing the proof-of-concept prototype, it became apparent
that changes were required to various aspects of the design. Further, as the proof-
of-concept prototype did not fully meet the requirements in chapter 2, additional
components must be included in the production design.

Speed control

As discussed in the section on fan speed monitoring below, use of the PWM DAC
is unnecessary and provides minimal benefit over the direct switching of the fan
supply. This means that there is no reason to include the PWM DAC in any final
production design, and so speed control is greatly simplified.

Without the PWM DAC, all that is required for speed control in the production
design is a suitably-rated transistor to control the supply to the fan, and a small
transistor to pull the PWM control input to ground. The same type of transistor
was used in the proof-of-concept prototype for each function, but the use of a
smaller transistor in the production design will save some cost without any effect
on the quality of the device.

The supply transistor must be rated for 12.6 volts and 3.3 amps drain-to-source,
must have a gate-to-source threshold voltage suitable for operation with the 3.3

70 of 304 Liam McSherry
 EC1520839

volts produced by microcontroller GPIOs, and must be capable of switching at a
frequency of at least 25 kHz. The Fairchild FDMS7682 (2015a) used in the proof-
of-concept prototype is a suitable MOSFET, and is available at reasonably low
cost (as low as £0.31 in single units). This device is rated for current well above
what is required—at the 15.2 mOhm RDS(ON) estimated in chapter 10.2 and taking
maximum permissible power dissipation (given a maximum permissible increase
in temperature of 75 ºC) as 0.6 watts, a FDMS7682 could provide each fan with
approximately 6.28 amps (discounting losses which result from switching). This
additional current-carrying capability could enable the use of a single FDMS7682
to operate two fans at the same speed.

The PWM control input transistor must be rated to switch at least 5.25 volts, and
must be rated for a current of at least 8 mA. The transistor should also be rated to
switch at a minimum of 25 kHz, although 21 kHz is the minimum acceptable
switching frequency. The proposed transistor is the Nexperia NX7002AK (2015),
which is rated to switch 60 volts, for a current up to 300 mA, and to dissipate no
more than 325 mW with RDS(ON) of 4.5 milliohms. When sinking 8 mA, this device
will dissipate in the region of 0.29 mW, producing only a negligible change in the
temperature of the device. Available at £0.11 in single units, this device enables a
relatively significant saving compared to the FDMS7682.

For discussion relating to the determination of the speed control method for a
particular fan, refer to the section on fan functionality monitoring below.

Monitoring: supply voltage and current

The testing of the proof-of-concept prototype did not indicate that the changing
of the method of monitoring fan supply voltage and current was necessary. The
methods used in the proof-of-concept prototype—a potential divider to measure
the supply voltage, and a current-sense resistor for the current—are therefore
proposed for use in the production design.

Monitoring: fan functionality

Although not included in the proof-of-concept prototype, it is necessary for the
production design to include means of assessing the functionality of a connected
fan. In particular, it must be possible to determine whether a fan is connected and
whether it is a 2-, 3-, or 4-pin fan.

The connection state of a fan can be determined by energising it and observing
the output from the current transducer. As current can only flow in a closed loop,
there would only be a non-zero result from the transducer when there is a fan
connected. This does not provide any notification immediately on connection,
but this issue could be resolved by the fan controller periodically energising any
known-unconnected fan connections to observe whether current flows.

To determine whether a fan is of the 2-, 3-, or 4-pin kind, the fan controller must
rely on detecting features present only in a particular variety—in 3-pin fans, the
presence of a tachometer; and in 4-pin fans, the presence of a control input. As
such, 3-pin fans can be identified by energising the fan and observing whether
any pulses are registered on already-present fan speed monitoring hardware. For
the detection of 4-pin fans, there are two viable methods: first, the controller uses
the speed control circuitry to provide a control signal and observes whether fan
speed changes; or second, the controller detects the presence of the fan-provided

Liam McSherry 71 of 304
EC1520839

pull-up on the control input.

Each of the methods for detecting 4-pin fans has its advantages: the first saves on
additional circuitry, while the second enables simpler firmware and would permit
faster initialisation by obviating the need for an adjust-speed-and-wait cycle. The
additional circuitry required would be circuitry to detect a pull-up voltage in the
range of around 2.5–5.25 volts, and so use of the control input voltage to drive a
Nexperia NX7002AK transistor (see the section on fan speed control above) that
is wired to an input on a microcontroller is likely to be the least expensive method
using additional circuitry. Depending on the logic level thresholds for the device
receiving the input, a simple potential divider may also be viable, if the divided
voltages are within the safe operating range of the device and are appropriately
above the logic high threshold voltage.

Any of these methods is viable, and so a final selection should be made once the
characteristics of the receiving device are known and once it is known whether
there is a need to cut cost.

Monitoring: fan speed

The proof-of-concept prototype enabled the testing of three methods of fan
speed control: the varying of the absolute fan voltage supplied to a fan using a so-
called PWM DAC; the varying of the average voltage supplied to a fan through the
modulation of the supply by PWM; and the use of 4-pin fan PWM control. As
discussed in chapter 5.4, it was anticipated that directly switching the supply
would result in a highly distorted output from the fan tachometer, and so it was
necessary both to have means of lowering the absolute voltage, and to establish
what effect directly switching the supply would have on the tachometer output.

The testing carried out to establish this is covered in Appendix F7.7. This testing
showed that, although the tachometer output is distorted as a result of the supply
modulation, the distortion is not severe at or around 25 kHz. Given the relatively
light distortion, it is expected that the signal could be made usable with minimal
conditioning. Of additional note is the discovery in Appendix F7.9 that some fans
may provide a tachometer where the output does not reach 0 volts—Fan 1A used
in testing, for example, provided a tachometer signal varying between 2 volts and
12 volts. Such behaviour must be accounted for to ensure that the fan speed can
be accurately recorded.

It is proposed that the signal be conditioned using a Schmitt trigger and a potential
divider. The Schmitt trigger would be used to mitigate any effect of the voltage
spikes observed in the tachometer output, with the potential divider to first lower
the output voltage into the safe range for the trigger, and to second manipulate
the tachometer output such that the spikes observed are do not cross between
the triggering bands for the device. As the precise potential divider configuration
depends on the operating characteristics of the trigger, a trigger must be selected
before a suitable divider arrangement can be selected. The proposed selection is
the ON NL37WZ17 (2013) triple Schmitt trigger non-inverting buffer, capable of
1.65–5.5 V operation and with parameters specified at 3 volts (approximately the
output of the regulator integrated into the microcontroller on the proof-of-
concept prototype). The NL37WZ17 has its positive-going threshold in the range
1.3–2.2 volts, its negative-going threshold in the range 0.6–1.5 volts, and its
hysteresis voltage in the range 0.4–1.2 volts, with typical values of 1.9 volts, 1.0

72 of 304 Liam McSherry
 EC1520839

volts, and 0.93 volts.

In selecting an appropriate potential divider for this device, it must be ensured
that the positive level of the tachometer is at least 2.2 volts, that the negative level
is at most 0.6 volts, and ideally that any noise does not spike more than 0.4 volts
in any direction—any larger spike could pass from the trigger’s hysteresis band
into one of its trigger bands, even though the typical hysteresis band width is given
as 0.93 volts. Additionally, it is necessary to consider the behaviour of a fan
tachometer and the noise potentially introduced as a result of switching the
supply. Reviewing Appendix F7.7, it was observed firstly that Fan 1A produced a
tachometer signal which did not fall below approximately 2 volts, making a lower
threshold of 3 volts is appropriate; and secondly that spikes in voltage were not
greater than around 2.5 volts at the negative level and not greater than around 1.5
volts at the positive level, meaning that tolerance of spikes of magnitude 2.5 V is
desirable. The potential divider must be selected so as to ensure the thresholds
set out here line up appropriately with the thresholds for the trigger given above.

In order to determine a suitable division ratio, a simple spreadsheet of a column
containing the tolerances in the preceding paragraph,27 a column for the trigger
thresholds, a computed column displaying the value of the first column multiplied
by the division ratio, and a further computed column with a value that indicated
whether the value in the first computed column was suitable. The ratio was then
adjusted through coarse “basic” fractions—half, a third, a quarter, a fifth, and so
on—until somewhat close divided values were obtained, and fine-tuned until the
divided values were reasonably close to those desired. It did not appear possible
to obtain all desired values; however, several potential ratios were identified and
are set out in Table 24 below.

Table 24

Potential division ratios for conditioning fan tachometer output

Division Ratio Schmitt Trigger Input (Volts)

Max. +Spike −Spike Min.

Target >2.20 >1.80 <1.00 <0.60

⁹⁄₄₄ 20.4545% 2.33 1.82 1.13 0.61

⁶⁹⁄₃₅₂ 19.6023% 2.23 1.74 1.08 0.59

³⁹⁹⁄₂₀₄₈ 19.4824% 2.22 1.73 1.07 0.58

Note: The +Spike and −Spike voltages are the target voltages accounting for the desired
tolerance for voltage spikes, and not the magnitudes of a spike in either direction.

As can be seen, no division ratio produces a set of output values where each value
matches the desired value. Nevertheless, while these values do not match those
desired, they are likely to remain suitable—if, in the spreadsheet, the tachometer

27 For the avoidance of doubt, the tachometer output tolerances used were: for the positive
maximum, 11.4 V (the minimum fan supply voltage); for the positive minimum, 8.9 V (the
positive maximum minus the 2.5 V tolerance); for the negative minimum, 3 V; and for the
negative maximum, 5.5 V (the negative minimum plus the 2.5 V tolerance).

Liam McSherry 73 of 304
EC1520839

output values are made more typical,28 the negative spike voltage for ratio ⁹⁄₄₄ is
the only value that does not match the desired values. This is also the behaviour
observed when both output tolerances and trigger thresholds are made typical,
and so ⁹⁄₄₄ is not a suitable ratio. The remaining ratios are suitable, and so can be
used in selecting a suitable potential divider arrangement.

The selection of a suitable arrangement is relatively simple in concept—a pair of
resistances (whether single resistors or a parallel resistor arrangement) must be
selected which both matches the ratio and which can be made from the standard
series of resistors set out in BS EN 60063 (BSI, 2015). Both 352 and 690 are values
in the E192 series, although the lower E-number series (E96, E48, E24, etc.) tend
to be more commonly available. The nearest E48-series values to these E192-
series values are 348 and 681, equivalent to around ⁶⁸.⁸⁸⁄₃₅₂. Using the spreadsheet
as a means of verification, this ratio was no better or worse, and so is suitable for
use. Additionally, one online parts retailer listed 146 resistors of 68.1K and 86 of
348K (with respective prices as low as £0.07 and £0.26 in single units), indicating
that there is unlikely to be any difficulty in sourcing resistors.

It is important to note that the tachometer output pull-up resistor will have some
effect on the divider—a 4.7 kiloohm pull-up (as was used in the proof-of-concept
prototype) gives the divider a total series resistance of 4.7 + 68.1 + 352 = 424.8
kiloohms, allowing a current of 28.25 μA to flow and so a voltage of 0.133 V to be
dropped across the 4.7 kiloohm resistor. While this is no insignificant voltage, the
spreadsheet indicated that, even with the worst-case tachometer output values
adjusted to account for the dropped 0.133 volts, the divided output would remain
as suitable for typical trigger thresholds. If the trigger thresholds are instead taken
to be their worst-case values, the only change is that the positive spike tolerance
may not be sufficient to ignore a negative-going spike of 2.5 volts. Considering
that the maximum observed spike magnitude at the positive level was not greater
than 1.5 volts, this is unlikely to cause an issue, and so there is no pressing need
to adjust the 4.7 kiloohm pull-up value. If practical testing reveals that this drop
is an issue, the drop could be reduced by increasing the resistances used in the
divider and by decreasing the value of the pull-up.

16.2 Form factor
It was determined in chapter 7 that the fan controller should be mountable in a
typical 5.25" bay, and that the reference should be SFF-8551J (which is concerned
with the form factor of CD drives). This remains the recommended form factor
for a production design, and so the use and implementation of this specification
is considered in this chapter.

Physical dimensions: review

The specification sets out recommended dimensions in Table 5-1 and its related
figure 5-1 (SFF, 2000, pp. 9–10). These dimensions are specified as ±0.25 mm (or
equivalently ±0.010"). The general dimensions are a width of 146.05 mm (5.750"),
a length of 202.80 mm (7.984"), and a height of 41.53 mm (1.635"), with the length
and height noted as maximums. The remaining dimensions give information such

28 The tachometer output values are made more typical by adjusting the positive maximum
to 12 volts, the positive minimum to 9.5 volts, the negative minimum to 2.5 volts, and the
negative maximum to 5 volts.

74 of 304 Liam McSherry
 EC1520839

as screw locations and bezel thickness.

While it would be possible to have manufactured a circuit board that would fit
these dimensions, it would likely be prohibitively expensive—using as a guide the
circuit board manufactured for the proof-of-concept prototype, each board of
area 18.26in² would cost $5.94 in 500-unit volume, around $0.325/in², resulting in
a circuit board of dimensions 5.75"×7.984" likely costing $14.93, or £10.71 at the
exchange rates at the time of writing. This represents more than a quarter of the
target per-unit cost in requirement 2.1.8. Instead, the production design should
use only as large a board as necessary, which should be fixed to a metal sled which
interfaces to the bay and its screw locations.

Metal sled design

The proposed design for the metal sled is simple—a U-shaped construction, with
the fan controller screwed to base of the inside of the U and the sides extending
only as far as necessary to enable attachment to the computer chassis. The design
would not include a bezel for the front of the computer chassis, and would have
the fan controller attached such that the fan connections were easily accessible
from the inside of the chassis (such as at the extent of the permitted length for a
5.25" CD drive, around 7.984" or 202.80 mm from the front of the chassis.

A metal is recommended for the material to provide a path to chassis ground. The
choice of a particular metal is likely to depend on the required cost-effectiveness,
although prior knowledge of typical computer chassis construction would suggest
use of steel or aluminium (these being common materials from which to build a
computer chassis). This is partially confirmed by a review of the chassis listed in
Table 2—of the chassis listed in that table, five were steel while the material for
one was not specified by its manufacturer. Aluminium is more common in higher-
cost chassis, and was present in 2 of 4 randomly-reviewed chassis over £150.

16.3 Power delivery
The implementing of the prototypes did not raise any concerns with the method
of power delivery, and so the hybrid PCI-E 12 V and USB 5 V system remains the
recommended system. This chapter considers the implementation of the power
delivery system in a production design.

PCI-E 12 V supply

On the proof-of-concept prototype, a 12 V supply was connected using a screw
terminal so as to enable easy connection to a bench power supply. For a final,
production design of the fan controller, this must be replaced by a connector that
is capable of accepting PCI-E 2 × 3 auxiliary power connectors. Such connectors
are available from Molex, in two varieties: 45718, which is a straight header rated
for 13 amps per contact; and 45558, which is a right-angle header rated at 8 amps
per contact. A third part, 45732, is listed on the Molex website, but appears to be
identical to 45558. The right-angle variant of this connector is likely to be the
most convenient for a user, as vertical access to a fan controller mounted in a
5.25" drive bay is likely to be hindered by optical disc drives (or other equipment)
mounted in adjacent bays.

If the fan controller were to be produced in a higher power variant, Molex does
also appear to manufacture connectors compatible with PCI-E 2 × 4 auxiliary
power connectors (part 45586), but also appears to have removed product pages

Liam McSherry 75 of 304
EC1520839

for this and related connectors from its website. A number of online retailers list
the item for sale, albeit generally as a non-stocked item.

USB 5 V supply

The proof-of-concept prototype did not include a 5 V supply—the connection to
a USB host was through the microcontroller development kit, which was only
connected to the prototype where absolutely necessary. Instead, a 3.3 V supply
was provided from a bench supply using a connection on the prototype’s 20-pin
female pin header. This is clearly unsuitable for a production design, and so there
must be a suitable USB connector.

This would, at first, appear simple—a number of standard USB connectors exist,
almost all of which are easy and inexpensive to source. However, a standard USB
connector is not typically available internally, and so a pass-through cable (which
would be routed from a port internal to the chassis to an external port, such as
might be available from the chassis back panel) would be necessary. Further, as
chapter 9.4 noted, there exists a standardised internal USB connector.29 This is a
connector more suited for internal use (that being its intended purpose), but may
not be a connector whose availability is guaranteed—although no motherboard
given in Table 8 had fewer than three internal connections, a brief survey of the
stock of an online retailer indicated than many chassis include four front panel
USB ports, and so (with ²⁄₇ of those motherboards having four or fewer internal
connections) it is necessary to consider other means of connection.

While the “sledgehammer solution” of having both an internal USB header and a
standard USB header exists, including an adaptor cable is the most suitable choice
of solution. An internal-to-internal cable would be required regardless, and so it
could be possible to make an agreement with a supplier for both. As an example,
StarTech already produces both internal-to-internal (2018a) and internal-to-USB
female (2018b) adaptor cables. Although the second cable is not suitable for this
use (and so would be replaced by a bespoke cable), it would not be unreasonable
to anticipate the total cost of two cables (given the single-unit prices of £2.39 and
£3.59, respectively) to be less than £2 in volume. No USB male-to-internal cables
could be identified other than non-name-brand cables from private sellers.

Protection and control: general

In order to help ensure that the fan controller is safe for use, circuit protection
and control devices must be included. However, the approach differs for each of
the supplies in use, and so each requires specific consideration.

Both supplies require protection against overcurrent and overload current. This
must include protective devices which can operate independent of a processing
element (such as a microcontroller).

For the 12 V supply, there must be a method of isolating the entire power network
from the supply. It must also be possible to individually energise or de-energise
each fan connected to the controller, and there must be protection against the

29 It is important to note that the standardised internal connector is not part of the USB
standard, instead being part of a specification published by Intel (2005c) which provides a
set of “connection and mechanical recommendations for all main boards having internal
connectors requiring external connection.” Here, USB ports on the front of chassis.

76 of 304 Liam McSherry
 EC1520839

inductive flyback produced by each fan.

For the 5 V supply, as a result of the design of the internal header, there must be
protection against the swapping of USB VBUS and GND conductors.30 VBUS and the
USB data lines must also be protected against transient overvoltage.

Protection and control: 12 V supply

The proposed overcurrent and overload current protection for the 12 V supply is
the combination of a single non-resettable fuse and one resettable “polyfuse” for
each fan. The intention is for each resettable fuse to trip above the maximum fan
steady-state current of 1.5 A (with a tripping characteristic enabling operation for
brief periods at the maximum start-up current of 2.2 A), providing a basic layer
of overcurrent and overload current protection. The non-resettable fuse would
be rated to trip below the maximum fault current31 of the selected resettable fuse,
ensuring safe operation under short circuit conditions.32

Supplementary overload current protection would be provided by the controller,
which would actively monitor the output of current transducers and would cause
portions of the circuit to be disconnected or de-energised as appropriate.

It is recommended that inductive flyback be protected against using a diode rated
to carry 3.3 A at 12.6 V. One such diode should be provided for each fan.

The controls enabling this would also be a combination—a relay (whether solid-
state or electromechanical) placed to enable complete isolation of the controller
from the supply, and a MOSFET as a low-side switch for each fan. The relay used
must be selected with an especial focus on low control (or coil) current, as even
a current of 50 mA would represent a significant proportion of the 500 mA total
available from the USB connection. Irrespective of the precise control current, it
would be necessary to control the relay with a small transistor—a microcontroller
generally cannot source more than a handful of milliamps, and even the relatively
high 20 mA sourcing capability of the controller used with the proof-of-concept
prototype would likely be unable to control the majority of relays. Alternatively,

30 To elaborate, while the internal USB header includes a keyed fifth position, this does not
prevent the connection of a 4-pin plug (which, without any key, could be inserted either in
the correct or incorrect orientation). An example of a 4-pin plug is the plug included with
the StarTech USBMBADAPT USB Type-A to internal header adaptor cable (2018b).

No protection is required for the connection of VBUS or GND to a data line, as section 7.1.1
of the USB specification (USB-IF, 2000, p. 124) requires that a USB transceiver be capable
of withstanding a continuous short circuit between the a data line and VBUS, GND, the other
data line, or the cable shield for at least 24 hours at the maximum VBUS of 5.25 volts.

31 “Maximum fault current” for resettable fuses is the equivalent of breaking capacity for
typical fuses and circuit breakers; a non-resettable fuse does not break the circuit (instead
introducing a large resistance to limit current), and so differing terminology is used.
32 Prospective short-circuit current is estimated at 35 amps. The ATX12V specification
recommends use of 16 AWG wire (Intel Corporation, 2005b, p. 37), which has a standard
resistivity of 10.36 mOhms/metre for 100% IACS-conductivity copper (ASTM, 2002). Using
a conductor length of 35 cm in each direction (the shortest length specified for a power
supply in Table 3, for the be quiet! BN240), this gives a minimum total-circuit resistance of
2×3.62… mOhm = 7.25 mOhms. However, the terminations, thin circuit board traces, and
the RDS(ON) from transistors likely add resistance in the region of 150–350 mOhm, which
would produce a prospective short-circuit current of 35–80 amps. This calculation did not
consider any correction factors.

Liam McSherry 77 of 304
EC1520839

if a suitably high-current device could be found, the relay could be controlled by
a digital or opto-isolator. This would remove current pressure on the 5 V supply,
but is likely to be a relatively expensive option. It would be necessary to compare
projected current demand from all 5 V-powered devices against the 500 mA that
the USB connection can provide, which could only realistically be done after or
as part of component selection.

Regarding the control MOSFETs, the only particular requirement is a low drain-
to-source on resistance—with the requirement to be able to switch 3.3 A, as in
the proof-of-concept prototype, a MOSFET with a 2 ohm RDS(ON) would dissipate
in the region of 22 W. No reasons preventing or discouraging use of the Fairchild
FDMS7682 MOSFETs used in the proof-of-concept prototype were identified.

Protection and control: 5 V supply

The proposed method of protecting against overcurrent and overload current in
the 5 V supply is the use of a single resettable fuse on the USB VBUS line. The use
of a non-resettable fuse for overcurrent protection is not considered necessary as
a result of the standard short circuit behaviour (see footnote 30 on page 76). A
resettable fuse selected for this purpose should operate above 500 mA, or lower
if a more accurate estimate of current demand is available.

Transient overvoltage protection can be provided by an array of TVS diodes on
the VBUS and data lines. Alternatively, more specialised devices intended for use
in USB protection are available—for example, a Silicon Labs application note on
the design of USB hardware (2013c) references the Nexperia IP4220CZ6 (2011a),
a monolithic device incorporating a TVS diode array and a Zener diode and which
is intended specifically for use in the protection of USB interfaces.

Protection against the swapping of VBUS and GND is slightly more complex—this
requires a device to permit current in only a single direction, and so a diode on
VBUS would initially appear to be the obvious solution. However, the forward
voltage of a silicon diode of around 0.7 V would pull VBUS from any valid value to
a value significantly below the 4.75–5.25 V permitted. Even the markedly lower
forward voltage of Schottky diodes, at a value likely not less than 0.2 V, would be
too great a drop, pulling any voltage less than 4.95 V below the limit. The solution
is to use a so-called “ideal” diode—a MOSFET, controlled in such a way as to act
as a diode, where the forward voltage is a function of the on resistance and the
current through the device (and so can be in the tens of millivolts range).33 These
devices are available in both monolithic (with MOSFET) and controller (using an
external MOSFET) types.

In this application, a device such as the Maxim MAX40200 (2017) is a suitable
choice. The device is available at reasonable cost (£0.47 for the WLP package in
single units), provides a low forward voltage of 43 mV typical at 500 mA, operates
from a 1.5–5.5 V supply, and is rated to block up to 6 V (safely above the 5.25 V
maximum voltage on VBUS). It is proposed that the production design use two of
these diodes (one for each of VBUS and GND) for two reasons: firstly, a path from
VBUS to ground may exist even with USB GND disconnected (for example, via the
12 V supply); and secondly, this causes USB GND potential to be around 43 mV

33 Note that variation in nomenclature exists. “Ideal diode” appears to be the most common
term, although some sources use “smart diode,” “lossless diode,” or “active diode” instead.

78 of 304 Liam McSherry
 EC1520839

above circuit ground, which cancels out the forward voltage drop from the diode
placed on VBUS. While this technique would work with conventional diodes, heat
loss in those diodes would remain unsuitably high: at 500 mA, 350 mW for a 0.7 V
silicon diode and 100 mW for a 0.2 V Schottky is enough to cause typical surface-
mount devices to experience increases in temperature up to 60 ºC and 100 ºC,
respectively (Fairchild, 2015b; Central, 2013). At the 75 ºC ambient assumed for
the proof-of-concept prototype, this would bring the silicon device within 15 ºC
of its maximum operating temperature, and would cause the Schottky to exceed
its maximum operating temperature. In comparison, the 43 mV dropped at
500 mA is equivalent to 21.5 mW, and would produce a rise in temperature of
2.3 ºC.

16.4 Host–controller interface
The selection in chapter 9 of USB as the host–controller interface remains valid,
and nothing learned in implementing the prototypes indicated that there would
be any advantage in using another interface. However, while USB remains the
most appropriate interface, USB 2.0 is not the most appropriate revision.

As discovered whilst implementing the USB prototype (see Appendix G1), it is not
possible for a USB device to request that the Windows operating system load the
WinUSB driver stack without implementing portions of USB 3.0. In order to have
the WinUSB driver automatically loaded, then, the fan controller must identify
itself as supporting “USB 2.1” (i.e. USB 3.0 operating at USB 2.0 speeds), and must
respond to standard USB requests for BOS descriptors.

While it would be possible to have WinUSB loaded for a USB 2.0 device, this may
require a more complex device set-up process—a driver package would become
necessary, with a custom-written configuration file specifying that WinUSB is to
be installed for the device (Microsoft Corporation, 2017e). It may also be the case
that this point is moot—if support for operating systems older than Windows 8 is
desired, support for the automatic loading of WinUSB would not be universal, and
so use of a driver package would be necessary regardless. Additionally, there may
be more advanced features (such as using Windows Update as a means of
distributing firmware updates) which require use of a driver package. However,
whether this is or is not the case, there is value in supporting use of the BOS, as
it may enable use of particular features under other operating systems.

Refer to chapter 16.3 for discussion relating to the physical interface.

16.5 Driver stack
As discussed in chapter 11, WinUSB was selected as a base for the host computer
driver as it enabled simplified development. This remains a sensible choice, and
no pressing need to select a different architecture was identified.

For discussion on the fan controller protocol, see chapter 16.6. Appendices G1.4
and G1.5 cover the development of software for use with the USB prototype (see
chapter 15.1), and so contain relevant information and discussion.

Windows.Devices.Usb

Although WinUSB was the underlying driver stack in use, the driver produced for
the USB ancillary prototype used the Windows.Devices.Usb abstraction to ease
development. It is recommended that, in a production design, this abstraction not

Liam McSherry 79 of 304
EC1520839

be used, as several important limitations make it unsuitable for production use.

First of these limitations, the abstraction provided no useful means of handling a
transfer error. The SendControlInTransferAsync method (and the equivalent
method for control OUT transfers) return an IAsyncOperation object, which can
indicate four basic statuses (started, cancelled, completed, or error) and can
provide an HRESULT error code. While this could be used to handle errors, there
is no list of typical error codes returned, and the list of standard Windows error
codes contains thousands of codes. It could be assumed that the errors returned
by the abstraction are the same as might be returned by WinUSB directly, but, as
a note to this effect could not be found in documentation, it cannot definitively
be said that this is the case. Additionally, it is unclear whether errors specific to
the abstraction can be raised, or if all errors raised would be WinUSB errors.

Second, the abstraction is designed for the Universal Windows Platform, and so
uses objects specific to UWP. If the driver targeted the .NET Framework (as was
the case for the USB prototype), this would require the use of a number of
conversion utilities wherever UWP-specific objects were used. Further, as UWP
can only be used with Windows 10, the abstraction could not be used for versions
of the host computer driver targeting older operating systems (such as Windows 7
and Windows 8 or 8.1). As Windows 7 is used by 41–48% of Windows users (with
39–44% using Windows 10), use of the UWP abstraction would require either that
all non-Windows 10 users be disregarded, or that separate drivers only for older
versions of Windows be developed (NetApplications.com, 2018; StatCounter,
2018). Neither is a good option—the first could half the number of potential users,
while the second would add significantly to the development required, especially
considering that separate (or largely separate) drivers would already be necessary
to support Linux-based or macOS operating systems.

Third, the abstraction does not expose the full capabilities of WinUSB. This is not
a great issue—some of the features not exposed were not considered for use in
the protocol implemented by the USB prototype—but the availability of features
not available in the abstraction could simplify code. Briefly, the abstraction does
not appear to support use of isochronous USB transfers, power management,
WinUSB pipe policy control, or the ability to reset a USB device or use WinUSB
functions synchronously. Of these unsupported features, the ability to execute a
WinUSB function synchronously would immediately enable the simplification of
code, as the boilerplate required with asynchronous execution could be removed
from parts of the code where asynchronicity gives no benefit.

These limitations in mind, it is recommended that the production design not use
the Windows.Devices.Usb abstraction.

Alternatives to Windows.Devices.Usb

It being recommended that the Windows.Devices.Usb abstraction not be used,
potential alternatives must be considered. A number of viable options exist.

The simplest option available is to continue to use WinUSB, either directly or via
another abstraction (whether bespoke or already available). One abstraction is the
open-source libusb (Dickens, 2017), which includes support for WinUSB as well
as the comparable interfaces on a number of other platforms. As stated at the start
of this chapter, no pressing need to change from WinUSB was identified, and so
libusb is likely to be the best choice.

80 of 304 Liam McSherry
 EC1520839

On Windows, an interface to USB devices is exposed through the User Mode
Driver Framework (UMDF). However, as stated in documentation for UMDF, this
interface is an abstraction of WinUSB (Microsoft Corporation, 2017d). Use of this
framework would therefore provide no advantage over use of libusb.

If a specific need for the access provided by that type of driver existed, it would
also be viable to use a kernel-mode driver. No situation necessitating the use of
a kernel-mode driver for the fan controller is foreseen. In the context of USB, it
would be necessary to use a kernel-mode driver if the ability to change the USB
device configuration34 is required (as WinUSB does not expose this functionality),
but no normal situation where this would be a requirement is foreseen.

General architecture

The least complex choice of architecture is that used in the drivers produced for
the USB prototype: a simple utility, manually started by a user and which provides
a simple interface for device configuration and status monitoring. The controller
would, under this architecture, operate autonomously in the configuration it was
last placed in until next reconfigured. This option is viable but not preferable, as
it provides no real advantage or unique selling point over other controllers.

Instead, it is proposed that the driver operate as a service (or daemon), constantly
running in the background on the host computer. This architecture has a number
of advantages—first, the host computer can more easily monitor the controller’s
status and inform the user of any relevant changes in status; second, the service
could (with a suitable USB protocol) receive and relay data to the fan controller,
enabling the use of almost any data (such as processor utilisation) in controlling
the fans; and third, a service architecture would reduce client-side complexity in
a transition from a WinUSB-based driver to another driver base, as the underlying
driver implementation is not exposed to the client (enabling use of an unchanging
interface to the driver, and so an unchanging client). Additionally, there would be
no practical restriction on the service being capable of operating in the configure-
and-forget mode discussed in the previous paragraph.

In using service architecture, it should be considered whether an out-of-the-box
interface capability should be included. For example, a scripting interface (using
a language such as Tcl or Lua) would enable a user to write a simple, plain-text
script to instruct the fan controller without the need for additional software. This
would add considerably to driver complexity, but could be added after any initial
release or publication.

16.6 Protocol
The protocol sets out how the host computer and the fan controller communicate
over the host–controller interface. The protocol for the USB prototype is set out
in Appendix D, with the implementation detailed in Appendix G1. However, the
implementing of the protocol highlighted the unsuitability of that protocol for use
in a production design. As such, it is recommended that the Appendix D protocol
not be used, and that a new protocol be defined for a production design.

This chapter will consider the design of that new protocol.

34 “Configuration” here meaning a grouping of interfaces exposed by a USB device, one of
which may be active at any time (USB-IF, 2000, p. 244).

Liam McSherry 81 of 304
EC1520839

Flaws in the Appendix D protocol

The Appendix D protocol has numerous flaws—the protocol is overly complex
for the little it does, and would not lend itself to future extension; it included no
facility for retrieving an indicator of the last error; and the request for retrieving
the current fan configuration, GET_FAN_MODE, is a crude method of retrieving the
current fan configuration. Additionally, the protocol was underspecified in areas
where precision is important (such as in the precise format of the configuration
data provided to the controller).

Any new protocol design must seek to remedy these flaws, and should aim to be
simple, extensible, well-specified, and efficient.

Architectural changes in the new protocol

In remedying the flaws in the Appendix D protocol, it is necessary to make some
changes to the general architecture of the protocol. First of these changes, it is
recommended that a new protocol be specified for USB 3.0 and not USB 2.0. This
would enable use of the Microsoft OS Descriptors 2.0 functionality (and so, for
example, the automatic loading of WinUSB) and the use of any similar features
for other operating systems.

The second of these changes relates to the general flow of data between the host
and the controller. In the Appendix D protocol, the host expressly requested that
the controller provide some information, with separate USB requests for each
item of information. This is not particularly efficient—a host must track intervals
for requests (as appropriate), and must be provided with (and must process) any
requested data, whether or not the values have changed. Further, this approach
makes a full status update more difficult than is necessary—for example, if there
were five separate items of information comprising a full status report, this might
result in a host being required to make five separate requests (with all necessary
validation and error-handling for each of the individual requests). Instead, it is
recommended that a new protocol use two endpoints—the first being the default
control endpoint required by the USB specification, and the second being an
interrupt endpoint specific to the fan controller protocol.

In this configuration, the host would periodically request a status update from the
controller on its interrupt endpoint, and the controller would provide a partial
status update containing only the information which had changed since the status
was previously requested. To make simpler the decoding of a partial update, the
protocol should be specified in such a way as to enable the lengths of the fields
of the status update to be determined with as little pre-decoding of the data as
possible. The proposed solution is the use of a response where the first byte (or
bytes) are a bitfield, with a set bit indicating that the information represented by
that bit is present, and the fields being present in their order in the bitfield. Each
field would then be a constant width (or a constant width multiplied by a factor
which could be determined ahead of time, such as the number of fans) to enable
the pre-allocation of buffers and the further simplification of the protocol. As for
extensibility, this could be achieved by reserving one of the bits of the bitfield as
an indicator that a further bitfield follows. Following this scheme, a host could
successfully interpret the contents of a status update without prior knowledge of
content it does not support—the standard encoding for variable-length bitfields
would enable the host to walk through the data until it is indicated that no further
bitfields are present; and the set ordering of the status fields would mean that any

82 of 304 Liam McSherry
 EC1520839

newer fields would appear at the end of the data, allowing a host to simply read
up to the field it supports. Care should be taken in specifying the status fields if
any fields are to be optional—a scheme such as that described in this paragraph
would not enable the cherry-picking of features, as the decoding a future field
requires knowledge of the lengths of all prior fields.

Such a scheme is likely to reduce the number of USB requests required for a fan
controller to operate, although it would be necessary to retain a number of basic
requests—in particular, requests for setting and retrieving fan configurations, and
a request for instructing the controller to provide a full (rather than partial) status
update on its interrupt endpoint. This latter request is necessary to solve the issue
of a host driver having only partial updates without a status base to update.

Specific changes in the new protocol

In addition to the general architectural changes which are recommended for any
new protocol, the implementing of the Appendix D protocol made clear a small
number of specific areas where changes were necessary or preferable.

First, a new protocol should enable error handling—the basic statuses provided
by USB (success, failure, etc.) would not be sufficient to diagnose an error, and so
the protocol should allow a host to retrieve an error code. Retrieval need not be
complex—for example, a USB request to retrieve a simple numeric error code for
the last error raised would be simple to implement and use. It may be desirable to
investigate other methods of error reporting, but these are likely unnecessary.

Second, in line with the aim of protocol simplification, unchanging information
about the controller and its fans should be condensed into a single class-specific
descriptor. In particular, information such as a unique identifier for each fan, the
methods of speed control supported for a particular fan, and the information in
the Appendix D fan controller configuration descriptor should be condensed into
one descriptor. In order to enable future extension, it may be suitable to specify
that any fan information field has variable length. The length, specified as part of
the descriptor, would enable the host to either interpret the field (using its length
to determine its content) or to ignore any portions of the field it does not support.
As for the extensibility of the descriptor itself, the appending of fields to the end
of the descriptor is likely to be suitable—the USB specification states that “if a
descriptor returns with a value in its length field that is greater than defined by
this specification, the extra bytes are ignored” (USB-IF, 2013, § 9.5). While this
requirement applies only in relation to standard USB descriptors, its extension to
class- or vendor-specific descriptors is unlikely to astonish.

Third, it is recommended that the setting of a fan mode be simplified through the
definition of a separate request for each mode. Although this would increase the
number of requests, this change would enable code simplification (with each of
the request makers and request handlers requiring less logic) and would simplify
future extension of the protocol (as the maximum permitted number of requests
is much greater than the number of modes that the 2-bit field in the Appendix D
protocol could specify, and because the behaviour for handling an unrecognised
request is already standardised in the USB specification).

Fourth, the rules on the format of configuration data should be made stricter and
more precise. In particular, where that data specifies a number of setpoints which
are selected based on temperature, the protocol should require that the setpoints

Liam McSherry 83 of 304
EC1520839

be ordered by temperature (and should impose similar requirements where the
selection is based on another quantity). Additionally, the protocol should provide
for a limit on the number of setpoints a host specifies (whether using a set number
or by enabling a fan controller to specify its supported maximum). The protocol
should also be extended such that the range of valid values for configuration data
includes all (or most) values a controller could reasonably encounter.

Fifth, requirements relating to the characterisation of a fan by a controller should
be extended. The protocol should require that a controller report the minimums
for each of the modes of control it supports (minimum starting voltage for voltage
control, minimum speed in RPM for absolute speed control, minimum percentage
speed for percentage-based speed control, and so on). It may be suitable for this
information to be included in the condensed descriptor discussed in the second
specific change discussed above, whether as part of the discussed variable-length
fan information field or as a separate field. Additionally, the representable range
of values for these minimums should be expanded—the 0–31% range used for the
minimum percentage speed in the Appendix D protocol is only suitable for fans
which comply with the 4-pin fan specification, and so the upper 30% limit given
in that specification may be exceeded by fans of a different specification.

Sixth, the protocol should enable the control of fans using measurements taken
by the host computer drivers (as discussed in chapter 16.5, where fan speed might
be set based on processor utilisation or another quantity measurable by the driver
and not the controller). This control should be generic, and could take a number
of forms in implementation—the simplest form would have the drivers perform
all work and instruct the controller to set a fan for a single specific speed, while
a more complex implementation could have the driver provide a function (similar
to a speed-against-temperature function) and the measurements to be used as the
inputs to that function. While the first option would greatly simplify the feature,
the second option could have some minor advantages (such as the ability to set a
default start-up value). Ultimately, the choice of implementation should be made
as part of the process of fully specifying a new protocol.

16.7 Miscellaneous
The previous sections of chapter 16 made recommendations largely stemming
from knowledge and experience gained in implementing the proof-of-concept
and ancillary prototypes. However, the implementing of the prototypes does not
cover all relevant areas, and so discussed here are miscellaneous areas of interest
which did not fit in previous sections.

Firmware storage and upgradeability

In order to fulfil requirements 2.2.4 and 2.3.3, a production design for a controller
must provide means to update the controller’s firmware. As chapters 9.4 notes, a
standard method of accomplishing this is defined for USB devices in the Device
Firmware Upgrade (DFU) device class specification (USB-IF, 2004).

A device that supports DFU indicates its support by presenting to the host a USB
interface descriptor with the device class information set to the standard values
for DFU. Then, to initiate an upgrade, the host issues a DFU_DETACH request to
that interface and resets the device. After this reset, the device reports to the host
only the appropriate DFU descriptors (which the host uses as part of the upgrade
process in assessing how the device will behave) and waits for the host to begin

84 of 304 Liam McSherry
 EC1520839

transferring the device the upgrade. Once this transfer completes, the host again
issues a reset to the device, causing it to return to normal operation. This process
is straightforward, but its implementation is complicated slightly by limitations in
WinUSB—the driver stack does not expose any interface for the issuing of a reset
to a USB device. To ensure correct function, either the host computer driver must
request that the operating system prepare the device for safe removal using the
CM_Request_Device_Eject function, or the fan controller be able to generate a
detach–attach cycle when a DFU_DETACH request is issued. As there are likely to
be similar limitations with other operating systems, the latter option is preferable.

As for storing the firmware, the most preferable option is some form of removable
storage attached to the controller. This would have a number of advantages—the
storage could be easily replaced if it fails, the effect of a firmware bug preventing
use of DFU is reduced (as the new firmware could be placed on the removable
storage device manually if required), and a user could be more easily permitted
to load unofficial firmware onto the device, and this would enable the use of the
controller by a hobbyist for a purpose other than to control computer fans. The
most suitable removal storage format is likely Secure Digital (SD)—such cards are
widely available, relatively inexpensive, and can be interacted with using the SPI
bus commonly included with microcontrollers (SD Association, 2017, p. 209). The
SD Association states (2018) that a licence is required to produce a compliant SD
product; however, this licence appears only to cover use of SD Card trademarks,
full SD Card specifications, and patents relating to the design and construction of
memory cards, and so there is unlikely to be any need for a licence in developing
the fan controller—there would be no need to advertise SD card support, and so
no need to license SD Card trademarks; the controller would be developed using
the SPI bus (rather than any other SD-specific bus) and the publicly-available SD
Simplified Specifications (or, if these are encumbered by a licensing requirement,
other publicly-available resources), and so there would be no need to license the
use of the full SD Card specifications; and memory cards used in the controller
would be sourced from a manufacturer, and so a licence for the patents required
to manufacture such a card would not be needed.

In terms of cost, it is expected that including an SD card and socket would be
relatively expensive—sockets for microSD cards are available starting at £0.80
(hinge type, Molex 47219-2001) or £0.70 (push-pull type, Molex 47571-0001) in
single units, and with consumer retailers offering 8 GB microSD cards for prices
in the region of £4.40, a lower-capacity card bought in bulk directly from the
manufacturer or from a distributor is expected to cost in the region of £2. Using
the £40 overall cost target given in requirement 2.1.8, £2.80 would represent
around 7% of the total cost. A decision on the inclusion of removal storage should
therefore be taken after the cost of essential components is known.

If removable storage is not included, it would be necessary to include some form
of memory in the fan controller circuit. While microcontroller on-board memory
could be used for this purpose, this would not be ideal—the EFM32WG990 uses

Liam McSherry 85 of 304
EC1520839

flash storage, and so is not well suited to small writes.35 Instead, a storage device
supporting byte-level erase operations and with sufficient capacity only to store
configuration data should be used. Such devices are available at low cost—the ST
M24C16 (2017) is a 2048-byte, 400 kHz I²C-connected EEPROM with a rating of
4 million write cycles available from £0.14 in single units, with smaller memories
available at marginally lower prices. If greater endurance is required, the Fujitsu
MB85RS16N (2015) is a 2048-byte SPI-bus ferroelectric RAM (FRAM) rated for
ten billion write cycles and one trillion read cycles, and can be found at £0.85 in
single-unit quantities.

Microcontroller-autonomous fan monitoring, etc.

As the requirements for the fan controller stand, there is unlikely to be a scarcity
of PWM generators—the EFM32WG microcontroller in use includes four timers
with three PWM channels per timer (and with independent duty control for each
channel). Even if two timers were unusable in generation of PWM signals (if, for
example, they were used as periodic timers in the firmware), this would leave six
PWM channels with independent duty control. Each of those channels can
additionally be routed to up to six separate pins on the microcontroller, a feature
which (given that modulating the supply and providing a standard control signal
would never occur at the same time for a given fan) could enable a single channel
to be used in controlling a fan instead of the two that might initially seem
necessary. However, if the requirements are changed such that additional PWM
generators are required, it may be necessary to investigate other solutions.

One potential solution would be the use of a field-programmable gate array—a
device consisting of hundreds or thousands of look-up tables (LUTs) representing
particular logical expressions. Such a device could be used to synthesise as many
PWM generators as are required (limited by the LUTs available), and so could
significantly reduce any pressure on timer and PWM resources. Further, such a
device could (with sufficient LUTs) implement other functionality, such as pulse-
counting to determine fan speed or an interface to an SD card or other storage (if
included as the section on firmware storage and upgradeability above discusses).
Such a solution, while it would increase the cost and complexity of the overall
design, could enable simplified circuit design—an FPGA that has an I²C interface
could be placed relatively close to controlled fans, with only connections for I²C
required to be routed back to the microcontroller. The Lattice iCE40UL1K (2016)

35 Flash memory and EEPROM (electrically erasable programmable read-only memory) use
comparable technology, with the primary difference being that flash memory is erased in
portions of a fixed number of bytes (called pages) while the individual bytes of an EEPROM
can be erased. The result of this is that, with flash memory, a change of even a single byte
results in the erasure of an entire page (which may be, for example, 512 bytes). Further, as it
is the erase (or rewrite) operation which degrades the cells of these devices, the repeated
writing of a small number of bytes to flash is, proportionally, more damaging than writing a
small number of bytes to EEPROM (Silicon Labs, 2013a).

86 of 304 Liam McSherry
 EC1520839

is a small FPGA with 1248 LUT4s,36 56 kBit of RAM, two I²C cores, and up to 26
programmable input–outputs, available from £1.16 in single units, and so would
be a likely candidate if an FPGA were to be used.

Additional analogue-to-digital converter channels

As chapter 14.1 (in the sections relating to supply-monitoring transducers and the
temperature sensor) notes, the availability of analogue-to-digital converter (ADC)
channels is a limiting factor in the design. The monitoring of each fan requires at
least two ADC channels (one for supply voltage, and another for current), and so
the eight channels provided by the microcontroller used in the proof-of-concept
prototype are entirely consumed in a fan controller design supporting the control
of four fans. If it is desired in a production fan controller design to monitor more
than four fans, or to monitor other quantities (such as overall supply current), the
number of available ADC channels must be increased.

The simplest method of increasing the number of available ADC channels is to
include in the design an external ADC, either to be used in combination with the
ADC on the microcontroller or to enable the use of a lower-end microcontroller
without an ADC. The Maxim MAX11643 (2011), for example, provides 16 channels
with 8-bit resolution and a 2.5 V internal reference, and can be found at £2.11 in
single quantities. While this would be an expensive option, especially considering
that volume discounts did not appear to change past 100-unit orders, a device of
this kind would triple the number of available ADC channels and could reduce
the complexity of a circuit board (only requiring the routing of a serial connection
between the microcontroller and analogue sources, rather than requiring that all
analogue sources have a connection routed to the microcontroller).

There does, however, exist a less expensive alternative—both the 4000 and 7400
series of logic chips include a number of analogue switches. The connection of a
single-pole many-throw switch (i.e. a multiplexer) would enable each channel on
the microcontroller to act as many channels, effectively increasing the number of
channels available for use. As with the solution given in the above paragraph, this
solution would enable the circuit board simplification (as only a single analogue
signal would be routed to the microcontroller for each switch, irrespective of the
number of throws the switch has). In selecting a particular switch, it is preferable
to have knowledge of the quantities to be measured—a downside of an analogue
switch being used in this way is that the microcontroller ADC’s scan mode cannot
scan through all inputs of the switch, and so there is a trade-off between ability
to scan through the inputs (by having more switches each with fewer throws) and
the complexity of routing and firmware (with fewer switches reducing required
control logic and reducing the number of connections to be routed). In terms of
cost, either option (many switches or many throws) is cheaper than the use of an
external ADC—both the Nexperia HEF4053B (2016a) triple SPDT and the Texas

36 A look-up table (LUT) in an FPGA is generally specified in terms of the number of inputs
and outputs it supports—as the LUT can be taken as storing only the truth table for a logic
expression and not the expression itself, this is one of the more significant metrics. A LUT4
is a LUT with four inputs or outputs, and so could represent any combination of inputs and
outputs provided that the total number does not exceed 4 and that there is at least a single
output. For example, a LUT4 could represent a 3-input AND with 1 output, a 2-input logic
expression with two outputs, or a 1-input expression with 3 inputs. Many LUTs are part of
larger logic cells, which include common circuitry (such as carry logic or flip-flops) to aid in
reducing the number of LUTs required for common functionality.

Liam McSherry 87 of 304
EC1520839

Instruments SN74LV4053A (2005b) triple 2-channel analogue (de)multiplexer can
be had at £0.29 in single units, while the Nexperia HEF4067B (2016b) single-pole
16-throw switch is available at £1.44 in single quantities. In terms of practicality,
the triple SPDTs (or 2:1 multiplexers) are likely to be the most useful, as they are
a reasonable trade-off between limiting the ability of the microcontroller to scan
its ADC channels and increasing circuit and firmware complexity.

• PAGE INTENTIONALLY LEFT BLANK •

Liam McSherry 89 of 304
EC1520839

Conclusion and Review

Chapter Page

17. Critical evaluation . 89

17.1 Aim and objectives 89

The technical knowledge objective 90

The per-unit cost objective 90

The schedule objective 91

The development cost objective 92

The documentation objective 92

The test suite objective 92

The design for manufacturing objective 93

The standards compliance objective 93

17.2 Hardware requirements 94

17.3 Firmware requirements 95

17.4 Software requirements 96

18. References . 97

19. Figures . 105

20. Tables . 106

17. Critical evaluation
A general aim and set of objectives are given in chapter 1, with a set of specific
requirements for each aspect of the project given in chapter 2. This chapter will
evaluate whether, and to what extent, the aim, objectives, and requirements were
met in carrying out the project.

17.1 Aim and objectives
The aim of the project, as set out in chapter 1.2, was to produce a prototype fan
controller which would be readily convertible, with minimal further work, to a
design suitable for commercial and volume production. This aim has been met.

The foundational elements of a fan controller are present in the proof-of-concept
prototype (chapter 14), with the ancillary prototypes (chapter 15) being a concrete
demonstration of what is required in relation to the more advanced aspects of a
fan controller. The review of these prototypes and the application of that review
in making recommendations for a production design (chapter 16) provides a base
of work for a design suitable for commercial and volume production. Further, the
information accumulated in the Research and Theory partition provides both a
summarised reference and a starting point for further research. As such, both the
components needed to fulfil the aim—that is, a prototype and an effort to reduce
future workload—are present.

Additionally, chapter 1.2 lists eight general objectives. Each of these objectives is

90 of 304 Liam McSherry
 EC1520839

considered individually below. In summary, three objectives were entirely met,
three were partially met, and two could not be definitively evaluated.

The technical knowledge objective

Objective 1.2.1 was to develop a product requiring a minimum amount of in-depth
technical knowledge to use, and which would be usable with as little instruction
as possible. This objective can be considered met.

In evaluating whether this objective is met, it is important to consider the person
who would purchase or be interested in purchasing a fan controller—this person
is likely to have some interest in information technology or an aspect of computer
engineering—an uninterested person would be more likely to rely on the simple
fan control provided by a motherboard—and is likely to be familiar with common
components of a computer system. A production fan controller design would be
aligned with the standards for these common components, and so an interested
person would require little familiarisation. In particular, an interested person is
likely to already be aware of 2- to 4-pin fan connectors and PCI Express 2 × 3
auxiliary power connectors, and is likely to be familiar with the 5.25" drive bay in
which a production design would be mounted.

Further, an interested person is likely to be comfortable with the idea of a device
not functioning before a device driver is installed, and is highly unlikely to be
confused by the concept of the fan speed being controlled based on temperature.
Although instruction would be required for more advanced concepts (such as the
use of an extension to the drivers to enable the fan controller to control fans using
another quantity), this feature is not required for the basic operation of the fan
controller and so cannot affect whether the objective has been met.

An interested person may require simple instruction where an electrical concept
is directly exposed—for example, where the drivers expose the ability to control
the voltage supplied to a fan, the person may need to be informed of the relation
between fan speed and supply voltage, and may require an explanation of the fan
starting voltage—but such instruction could be summarised into single-sentence
hints displayed in the user interface of the driver software.

The per-unit cost objective

Objective 1.2.2 was to attain as low a per-unit cost as practical without exceeding
the £40 per-unit limit set out in requirement 2.1.8 and without excessive impact
on the quality, safety, or reliability of the device. As the full production design for
a fan controller was not produced, it cannot be said whether this objective has
been met. It is, however, possible to make an estimate.

As requirement 2.1.8 specifies that the £40 per-unit cost is in reasonable volume,
this estimate is made using the costs of components in 1000-unit quantities.

Following the recommendations in chapter 16.1, each fan connection would have
a Fairchild FDMS7682 (£0.120) and a Nexperia NX7002AK (£0.022) as its control
transistors. Voltage and current sensing remaining the same, and so there would
be one TI INA180A2 (£0.180), one Vishay WSLP0805R0100FEA (£0.309) for a
current-sense resistor, with one Vishay CRCW080538K3FKEB (£0.006) and one
Vishay CRCW12101K10FKEAHP (£0.096) to form a potential divider. For the
detection of fan functionality, a further NX7002AK (£0.022) enables sensing the

Liam McSherry 91 of 304
EC1520839

presence of a pulled-up PWM control wire. The circuitry for conditioning the fan
tachometer would use an ON NL37WZ17 (£0.113) Schmitt trigger with another
potential divider formed by 68.1 kOhm and 348 kOhm resistors such as the Yageo
RC0402FR-0768K1L (£0.002) and RC0402FR-07348KL (£0.002). Further, as the
fan connection is standard, the Molex 47053-1000 (£0.161) would continue to be
used. This gives an estimated cost per fan connection of £1.033, or £4.132 for four
fan connections (representing around 10.3% of the maximum cost).

If the $0.325/in² figure given in chapter 16.2 for the cost of manufacturing a circuit
board is accurate, and assuming a circuit board size of 5.75”×4", the circuit board
is likely to cost in the region of $7.475—equivalent to £5.274 at the time of writing.
This is approximately equivalent to 13.2% of the permissible per-unit cost, and
gives a running total of around £9.406 (23.5%) when taken with the above cost.

As recommended in chapter 16.3, a Molex 45558-0003 (£0.301) would be used to
connect to the 12 V supply and a typical four-position header, such as the Wurth
Electronics 61300411121 (£0.068), to connect the 5 V supply. The 12 V connection
would be controlled by a relay with a suitably low coil current, such as the
Panasonic ADW1103HLW (£2.140), and the relay with a small transistor such as
the Nexperia NX7002AK (£0.022). The 12 V supply would be protected by a
typical non-resettable fuse, such as the Bel Fuse 0685H9200-01 (£0.134), and
each fan by a resettable temperature-dependent fuse, such as the Bel Fuse
0ZCG0150BF2C (4 × £0.059), and a flyback diode such as the ComChip
CDBA540-HF (4 × £0.093). Additionally, the 5 V supply would be protected by a
Nexperia IP4220CZ6 (£0.093) transient voltage suppression array, by a resettable
fuse such as a Littelfuse 0603L050SL (£0.579), and by a pair of Maxim MAX40200
(2 × £0.221) reverse polarity protection diodes. The cost for these components is
then £4.387 (11%), giving a total of £13.793 (34.5%).

While this figure is not the full components cost—a production design would also
be required to include, for example, decoupling capacitors for integrated circuits
and resistors for the MOSFET gates—the cost of the further components needed
is unlikely to be great, and so there may be as much as £25 remaining per unit for
the metal sled (see chapter 16.2), fabrication, packaging, documentation, and the
amortisation across multiple sales of costs such as device certification.37 Further,
as no in-depth component comparisons were done in making this estimate, it may
be possible to find equally suitable components at a lower cost.

This considered, it is likely that this objective could, and would, be met.

The schedule objective

Objective 1.2.3 was to deliver the prototype in line with the proposed schedule
set out in Appendix A1. As noted in Appendix A2, the proposed schedule did not
accurately reflect the time available for the project, and so was not used after the
9th of November 2018. If the proposed schedule had been used, the three weeks
allocated in chapter 3.1 for slippage would have been entirely used, and so the

37 In order to be sold, a device must undergo formal certification. For an electronic device,
this would generally involve testing by an accredited laboratory to ensure compliance with
relevant European requirements and with the United States’ Federal Communications
Commission requirements for electromagnetic compatibility. Additionally, the Windows
operating system requires that driver packages be digitally signed (Microsoft Corporation,
2017a), and so an annual payment to a certificate authority would be necessary.

92 of 304 Liam McSherry
 EC1520839

project may have run past the proposed deadline.

The proof-of-concept prototype was ordered on the 13th of November, and the
proposed schedule estimated that the manufacturing and shipping would take no
more than three weeks, which would mean that the prototype would have been
received by the 4th of December. In reality, the prototype was received on the
21st of December—two weeks later than estimated. While other work was done
in the time between the expected and actual date of receipt, it is unlikely that this
other work would significantly lessen the slippage time used.

Further, the proposed schedule allocated three weeks for testing the prototype,
the firmware for the prototype, and any software. It was not considered that there
would be a significant limit on access to test equipment, and so the limit resulting
in testing being carried out across the four weeks from the 12th of January to the
8th of February would have further eaten into the time available. No account is
taken here of the time taken to test the ancillary prototypes, as these prototypes
were not part of the proposed schedule.

As such, it cannot be said whether this objective has been met.

The development cost objective

Objective 1.2.4 was to develop the prototype referred to in the aim at a cost not
greater than £600. This aim has been met, as the record of project expenditure in
Appendix E shows that the total spend was £215.04—well below the limit.

The documentation objective

Objective 1.2.5 was to produce, to a high standard, all the materials which would
be required to reproduce the prototype, and to include those materials in this
report. This objective has been met.

Appendix F1 contains the bill of materials for the proof-of-concept prototype, as
well as a list of the reference designators which identify these components in the
schematic diagrams in Appendix F2 and the circuit design in Appendix F3. The
discussion in Appendix F5 provides rationale for decisions made in producing the
proof-of-concept firmware, while chapters 10 and 14 give reasoning for selecting
the hardware used in the proof-of-concept prototype. Additionally, chapter 15
and Appendix G provide similar (but less detailed) discussion about the ancillary
prototypes. These resources are sufficient to reproduce the project.

The test suite objective

Objective 1.2.6 was to produce for the prototype a robust suite of tests which was,
where possible, automated. This objective has been partially met.

In relation to the proof-of-concept prototype, the objective has been met. A test
plan is contained in Appendix F6, with a number of action items covering aspects
of the proof-of-concept prototype hardware and firmware. The prototype had no
software element. As automation was not considered practical, and given the
concerns over the safety of the connection of the proof-of-concept prototype to
the development kit, all tests were performed manually.

In relation to the ancillary prototypes, only the USB prototype was implemented
practically, and so no tests could have produced for the sensors prototype. When
considering the time available, it was considered that there was insufficient time

Liam McSherry 93 of 304
EC1520839

to produce a suite of tests for the USB prototype by reason of the complexity of
such a suite (which would be required to emulate the behaviour of the WinUSB
interface and the USB device). As such, the USB prototype was tested manually
and informally simultaneously with development, and so the objective cannot be
considered met for USB prototype.

The design for manufacturing objective

Objective 1.2.7 was to have consideration for the ease of manufacturing the fan
controller, and also to identify and implement accepted design for manufacturing
practices (DFM). This objective has not been fully met.

As no specific design for manufacturing practices were identified, and so because
there was no express consideration of those practices, this objective cannot be
considered fully met. However, as some design for manufacturing practices were
implemented, the objective can be partially met.

The most basic implementation of DFM was the designing of a circuit board (see
Appendix F3) against the fabricator’s listed capabilities. This process was largely
automated, with the Autodesk EAGLE software used accepting design rule data
provided by the fabricator and providing a warning if the design exceeded a limit
or minimum set by the design rules. Examples of the fabricator’s design rules are
that a circuit trace cannot have a width less than 5 mil (0.127 mm), no feature on
the circuit board can be closer than 10 mil (0.254 mm) from the edge of the circuit
board, and no hole requiring a drill smaller than 12 mil (0.305 mm) can be drilled.
Following these rules, the likelihood of manufacturing error is reduced.

Further, the proof-of-concept prototype used surface-mount components where
possible, with only four through-hole components (one 20-pin header, one screw
terminal, and two fan connectors). Similarly, the parts selected in chapter 16 are
primarily surface-mount. This practice is recommended to reduce the additional
work required by the assembler and to increase the speed of assembly, thereby
reducing cost, with the use of through-hole parts for components experiencing
considerable forces (such as external connectors, as is the case here) an accepted
exception (Worthington Assembly, 2013a; 2013b).

Additionally, widely available parts were used or recommended for use where it
was practical to do so. For example, 4000- or 7400-series logic devices were
recommended for use with fan speed measurement; and circuits were designed
around values from the standard series of resistors (BSI, 2015) where possible.
Where a single-source component could not be avoided (as with the fan
connectors or PCI Express auxiliary power connectors), the components were
components either implementing a common standard or expressly referred to in
that standard. This reduces the likelihood of a part becoming end-of-life or scarce
having an impact on manufacturing (as the part could be replaced by a compatible
alternative from another manufacturer).

Other DFM practices were also implemented.

The standards compliance objective

Objective 1.2.8 was to identify and comply with all standards relevant to the fan
controller and all law applicable to it, and in doing so to have particular regard to
standards and law concerned with health and safety and with requirements for

94 of 304 Liam McSherry
 EC1520839

electromagnetic compatibility. This objective has been largely met.

The Research and Theory partition identifies the majority of the standards which
are relevant, with a list of those identified given in chapter 4.4. That chapter also
identifies a number of relevant laws and discusses their applicability to prototype
designs. Additional standards were identified in chapters 16.4 and 16.7.

The compliance of the prototypes with these standards is detailed throughout the
report. For the standards and law listed in chapter 4.4, compliance with the 4-pin
fan specification is detailed in chapters 5, 8.2, and 14.1; for SFF-8551J, discussion
in chapters 7 and 16.2 covers the requirements for compliance; for the Universal
Serial Bus specifications version 2.0 and 3.1, chapters 9.4, 11, 13, 16.4 contain the
relevant discussion along with Appendix G1; and for the compliance with the PCI
Express electromechanical specification for high-power cards, consideration in
chapter 8.1 discusses requirements.

The compliance of the prototypes with the statutory instruments identified as
relevant in chapter 4.4 is not discussed at length—while that chapter provides
some discussion, the regulations were not believed to apply to the prototype, and
so it was considered that attaining a functional prototype was of greater concern
than compliance which was unnecessary and which would be prohibitively costly
to verify. As such, while the requirements for identification and compliance with
standards were largely fulfilled, the objective cannot be considered fully met.

17.2 Hardware requirements
In addition to the project aim and objectives, which were relatively general, a set
of eight specific requirements were given in chapter 2.1 for hardware produced
in carrying out the project. All of these requirements have been fulfilled.

As discussed in chapter 5.1, the two-, three-, and four-pin varieties of fan are the
varieties commonly used in computer systems. The ability to control these types
of fan is implemented in the proof-of-concept prototype (see chapter 8.2) and in
the recommendations for a production design in chapter 16.1, and so everything
needed to fulfil requirement 2.1.1 is present.

Regarding requirement 2.1.2, chapter 8.2 discusses the margins in the supply and
concludes that there is sufficient margin to control four fans, while discussion of
the resources required is included in chapters 14.2 and 16.1. While the proof-of-
concept prototype only supported the control of two fans, suitable provision is
made in the design and in recommendations for a production design to consider
this requirement fulfilled.

To fulfil requirement 2.1.3, chapter 7 identifies and selects a suitable means for
mounting a fan controller in a computer chassis, and chapter 16.2 contains further
discussion on this subject. As before, it is considered that these recommendations
are sufficient to fulfil the requirement without a practical implementation.

As discussed in chapters 8.1 and 16.3, the fan controller would use two supplies
available internally to the host computer (and hence assumed to use the primary
power supply of that computer). This fulfils requirement 2.1.4.

Requirement 2.1.5 was for the controller to interface with a host computer using
standard and widely-available means. The selection in chapter 9 of USB, its use
in the USB prototype (see chapter 15.1 and Appendix G1) and its recommendation

Liam McSherry 95 of 304
EC1520839

in chapter 16.4 are sufficient to fulfil requirement 2.1.5.

Necessary to fulfil requirement 2.1.6 is a means of acquiring relevant data, which
is provided by a temperature sensor (see chapter 14.1), transducers for the supply
voltage and current, and means to receive the fan tachometer signal (both being
discussed in chapter 16.1). As such, this requirement is fulfilled.

Requirement 2.1.7 was for the controller to comply with all applicable health and
safety law. It is believed, based on resources provided by the Health and Safety
Executive (2018), that chapter 4.4 covers the vast majority of applicable law, and
that the requirements of this law have been met. In particular, it is believed that
the general safety requirement would be fulfilled by the implementation of the
protective measures discussed in chapter 16.3; that the requirements set out in
the Restriction of the Use of Certain Hazardous Substances in Electrical and
Electronic Equipment Regulations 2012 (S.I. 2012/3032) (“RoHS”) are fulfilled by
the proof-of-concept prototype’s use of only components advertised as RoHS-
compliant by their manufacturers; and that, while it was not possible to verify the
fan controller’s compliance with electromagnetic compatibility requirements due
to the prohibitive cost of doing so, it is unlikely that there would be significant
issues in a production design. As such, while the requirement is not fulfilled in its
entirety, it can be considered fulfilled.

In order to fulfil requirement 2.1.8, the cost of producing the production design
for the fan controller could not exceed £40. As the section in chapter 17.1 on the
per-unit cost objective discusses, while this cannot be evaluated without a full
selection of components, it is likely that this requirement could be met, and so it
can be considered fulfilled.

17.3 Firmware requirements
As well as the requirements for hardware discussed in chapter 17.2 above, a set of
six firmware requirements was listed in chapter 2.2. All of these requirements
have been fulfilled.

As stated in requirement 2.2.1, the firmware must be capable of controlling and
monitoring each fan connected to the controller, and must be able to report fan
speed to the host controller. These capabilities were implemented by the proof-
of-prototype firmware (see chapter 14.4) and by the USB prototype (chapter 15.1
and Appendix G1), and so this requirement is fulfilled.

The proof-of-concept firmware also, in combination with the sensors prototype
discussed in chapter 15.2 and Appendix G2, implements the interfacing with a set
of transducers necessary to fulfil requirement 2.2.2.

The means of detecting the failure of a fan, as required to fulfil requirement 2.2.3,
is discussed in chapter 16.1 in the section on monitoring fan functionality. The fan
controller would be able to report such a failure as a disconnection event (see the
discussion on protocol architecture in chapter 16.6), fulfilling the portion of the
requirement on reporting failure and hence fulfilling requirement 2.2.3.

Requirement 2.2.4 is partially fulfilled by practical implementation and partially
fulfilled by recommendation—the USB prototype (chapter 15.1 and Appendix G1)
demonstrates what is necessary to communicate with the host computer, and the
identification (in chapter 9.4) and recommendation (in chapter 16.7) of the use of

96 of 304 Liam McSherry
 EC1520839

the Device Firmware Upgrade (DFU) device class enables the in-circuit updating
of the firmware in a production design.

In order to fulfil requirement 2.2.5, chapter 16.7 considers options for the storage
of configuration data by the production design for a fan controller.

The framework necessary to support complex configurations (such as a function
for the translating of temperature to fan speed) is demonstrated in chapter 15.1
and Appendix G1, which cover the USB prototype. Further, recommendations for
changes to the host–controller protocol in chapter 16.6 consider other methods
of implementing such a feature, fulfilling requirement 2.2.6.

17.4 Software requirements
Additional to the requirements for hardware and for firmware are three software
requirements set out in chapter 2.3. All software requirements were fulfilled.

Requirement 2.3.1 was for the software to be capable of displaying data reported
by the fan controller in real time. The USB prototype (refer to chapter 15.1 and
Appendix G1) demonstrates the ability of software to display reported data, with
the real-time aspect being enabled by the architectural changes to the protocol
discussed in chapter 16.6. As such, this requirement is fulfilled.

The USB prototype also demonstrates the provision by the software to the fan
controller a complex configuration prescribed by requirement 2.3.2. The ability
of the software to provide a complex function—a mapping of a measured variable
to a controlled variable, here temperature to fan speed—fulfils this requirement,
as this ability includes providing simple and complex configuration data.

To fulfil requirement 2.3.3, it was necessary for the software to support updating
the fan controller firmware. Although no practical demonstration of this feature
was given, chapter 16.7 covers what would be needed to support this feature, and
so this requirement can be considered fulfilled.

Liam McSherry 97 of 304
EC1520839

18. References
1. ADDA Corporation, 2004. Specification for Approval – Model No.

AD0912-A70GL (TC) DC Fan (Lead Free). rev. A ed. s.l.:ADDA
Corporation.

2. ARM, 2010. Cortex-M4 Devices – Generic User Guide. Cambridge: ARM
Limited.

3. ASTM, 2002. ASTM B258-02: Standard Specification for Standard
Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid
Round Wires Used as Electrical Conductors. West Conshohocken(PA):
ASTM International.

4. Axelson, J., 2009. USB Complete: The Developer's Guide. 4th ed.
Madison(Wisconsin): Lakeview Research LLC.

5. Bradner, S., 1997. RFC 2119: Key words for use in RFCs to Indicate
Requirement Levels. [Online]
Available at: https://tools.ietf.org/html/rfc2119

6. BSI, 1995. BS EN ISO/IEC 7498-1: Information technology — Open
Systems Interconnection — Basic Reference Model: The Basic Model.
s.l.:British Standards Institution.

7. BSI, 1999. BS ISO/IEC 9899: Programming languages — C. s.l.:British
Standards Institution.

8. BSI, 2015. BS EN 60063: Preferred number series for resistors and
capacitors. s.l.:British Standards Institution.

9. Central, 2013. CFSH05-20L: Surface Mount Silicon Low Vf Schottky
Diode – 0.5 amp, 20 volt. R2 ed. s.l.:Central Semiconductor Corp..

10. Cooler Master Co., Ltd, 2008. MegaFlow 200 Blue LED Silent Fan.
s.l.:Cooler Master Co., Ltd.

11. Dickens, C., 2017. libusb. [Online]
Available at: http://libusb.info/
[Accessed 17 March 2018].

12. EIA, 1969. EIA RS-232-C: Interface Between Data Terminal Equipment
and Data Communication Equipment Employing Serial Binary Data
Interface. Washington D.C.: Electronic Industries Association.

13. Fairchild, 2015a. FDMS7682: N-Channel PowerTrench MOSFET – 30 V,
6.3 mOhm. s.l.:ON Semiconductor.

14. Fairchild, 2015b. S1A–S1M: General-Purpose Rectifiers. rev. 2.10 ed.
s.l.:ON Semiconductor.

15. Fluke, 2007. Dual impedance digital multimeters – What's the point?. rev.
B ed. Eindhoven: Fluke Corporation.

16. FTDI Ltd., 2010. Can I use FTDI's VID for my own product?. [Online]
Available at:
http://www.ftdichip.com/Support/Knowledgebase/index.html?caniusef
tdisvidformypr.htm
[Accessed 15 September 2017].

98 of 304 Liam McSherry
 EC1520839

17. Fujitsu, 2015. MB85RS16N: 16 K (2 K × 8) Bit SPI. Yokohama(Kanagawa):
Fujitsu Semiconductor.

18. Gamazo-Real, J. C., Vázquez-Sánchez, E. & Gómez-Gil, J., 2010. Position
and Speed Control of Brushless DC Motors Using Sensorless
Techniques and Application Trends. Sensors, 19 July.10(7).

19. Giesselmann, M., Salehfar, H., Toliyat, H. A. & Rahman, T. U., 2002.
Modulation Strategies. In: S. L. Timothy, ed. The Power Electronics
Handbook. Boca Raton(Florida): CRC Press, p. 305–339.

20. Health and Safety Executive, 2018. UK law on the design and supply of
products. [Online]
Available at: http://www.hse.gov.uk/work-equipment-machinery/uk-
law-design-supply-products.htm
[Accessed 31 March 2018].

21. HM Government, 2005. The General Product Safety Regulations (S.I.
2005/1803). s.l.:National Archives.

22. HM Government, 2010. The Ecodesign for Energy-Related Products
Regulations 2010 (S.I. 2010/2617). s.l.:National Archives.

23. HM Government, 2012. The Restriction of the Use of Certain Hazardous
Substances in Electrical and Electronic Equipment Regulations 2012
(S.I. 2012/3032). s.l.:National Archives.

24. HM Government, 2016a. The Electrical Equipment (Safety) Regulations
2016 (S.I. 2016/1101). s.l.:National Archives.

25. HM Government, 2016b. The Electromagnetic Compatibility Regulations
2016 (S.I. 2016/1091). s.l.:National Archives.

26. Honeywell, n.d. Hall Effect Sensing and Application. s.l.:Honeywell.

27. Horowitz, P. & Hill, W., 1989. The Art of Electronics. 2nd ed. Cambridge:
Cambridge University Press.

28. IEEE, 2015. IEEE Std. 802.3: Standard for Ethernet. 2015 ed. New York:
IEEE Standards Association.

29. Intel Corporation, 2002. ATX Specification. v2.1 ed. s.l.:Intel Corporation.

30. Intel Corporation, 2005a. 4-Wire Pulse Width Modulation (PWM)
Controlled Fans Specification. rev. 1.3 ed. s.l.:Intel Corporation.

31. Intel Corporation, 2005b. ATX12V Power Supply Design Guide. v2.2 ed.
s.l.:Intel Corporation.

32. Intel Corporation, 2005c. Front Panel I/O Connectivity Design Guide. rev.
1.3 ed. s.l.:Intel Corporation.

33. Intel Corporation, 2007. Intel Core 2 Duo processor with the Mobile Intel
945GME Express Chipset Development Kit User's Manual. rev. 001 ed.
s.l.:Intel Corporation.

Liam McSherry 99 of 304
EC1520839

34. Intel Corporation, 2013. Desktop boards — Three-wire and four-wire fan
connectors. [Online]
Available at:
https://web.archive.org/web/20140122004200/http://www.intel.com/su
pport/motherboards/desktop/sb/cs-012074.htm
[Accessed 8 September 2017].

35. IPC, 1999. IPC-SM-782A (including Amendments 1 and 2): Surface Mount
Design and Land Pattern Standard. Northbrook(Illinois): IPC.

36. ITU, 2012. ITU-T X.667 (ISO/IEC 9834-8): Information technology –
Procedures for the operation of object identifier registration
authorities: Generation of universally unique identifiers and their use
in object identifiers. 3.0 ed. s.l.:International Telecommunication
Union, Telecommunication Standardization Sector.

37. Karki, J., 1998. Understanding Operational Amplifier Specifications.
Austin(Texas): Texas Instruments.

38. Keagy, M., 2002. Calculate Dissipation for MOSFETs in High-Power
Supplies. [Online]
Available at: http://electronicdesign.com/boards/calculate-dissipation-
mosfets-high-power-supplies
[Accessed 12 September 2017].

39. Krakauer, D., 2011. Anatomy of a Digital Isolator.
Norwood(Massachusetts): Analog Devices.

40. Lattice, 2016. iCE40 UltraLite™ Family Data Sheet. version 1.4 ed.
s.l.:Lattice Semiconductor.

41. Leach, P. J., Mealling, M. & Salz, R., 2005. RFC 4122: A Universally
Unique IDentifier (UUID) URN Namespace. s.l.:Internet Engineering
Task Force.

42. Lin, Z. & Pearson, S., 2013. An inside look at industrial Ethernet
communication protocols, Dallas: Texas Instruments.

43. Maxim, 2011. MAX11638/MAX11639/MAX11642/MAX11643: 8-Bit, 16-/8-
Channel, 300ksps ADCs with FIFO and Internal Reference. rev. 0 ed.
s.l.:Maxim Integrated.

44. Maxim, 2017. MAX40200: Ultra-Tiny Micropower, 1A Ideal Diode with
Ultra-Low Voltage Drop. rev. 1 ed. s.l.:Maxim Integrated.

45. Microchip Technology, 2017. Application to Request a Sublicense of
Microchip's Universal Serial Bus Vendor ID. [Online]
Available at: http://www.microchip.com/usblicensing/
[Accessed 15 September 2017].

46. Microsoft Corporation, 2007. Microsoft OS Descriptors Overview. 1.0 ed.
s.l.:Microsoft.

100 of 304 Liam McSherry
 EC1520839

47. Microsoft Corporation, 2009. How does USB stack enumerate a device?.
[Online]
Available at:
https://blogs.msdn.microsoft.com/usbcoreblog/2009/10/30/how-does-
usb-stack-enumerate-a-device/
[Accessed 27 January 2018].

48. Microsoft Corporation, 2017a. Get a code signing certificate. [Online]
Available at: https://docs.microsoft.com/en-us/windows-
hardware/drivers/dashboard/get-a-code-signing-certificate
[Accessed 28 March 2018].

49. Microsoft Corporation, 2017b. Microsoft OS 2.0 Descriptors Specification.
2.0 ed. s.l.:Microsoft.

50. Microsoft Corporation, 2017c. Overview of Device Interface Classes.
[Online]
Available at: https://docs.microsoft.com/en-us/windows-
hardware/drivers/install/overview-of-device-interface-classes
[Accessed 18 February 2018].

51. Microsoft Corporation, 2017d. USB-Specific UMDF 1.x Interfaces.
[Online]
Available at: https://docs.microsoft.com/en-us/windows-
hardware/drivers/wdf/usb-specific-umdf-1-x-interfaces
[Accessed 17 March 2018].

52. Microsoft Corporation, 2017e. WinUSB (Winusb.sys) Installation. [Online]
Available at: https://docs.microsoft.com/en-us/windows-
hardware/drivers/usbcon/winusb-installation#a-href-idinfawriting-a-
custom-inf-for-winusb-installation
[Accessed 8 March 2017].

53. Microsoft Corporation, n.d. WinUSB Device. [Online]
Available at: https://msdn.microsoft.com/en-
gb/library/windows/hardware/hh450799.aspx
[Accessed 10 October 2017].

54. Morris, C., 2016. Blu-Ray Struggles in the Streaming Age. [Online]
Available at: http://fortune.com/2016/01/08/blu-ray-struggles-in-the-
streaming-age/
[Accessed 13 September 2017].

55. NetApplications.com, 2018. Operating System Share by Version —
February 2017 to February 2018. [Online]
Available at: https://netmarketshare.com/operating-system-market-
share.aspx
[Accessed 17 March 2018].

56. Nexperia, 2011a. IP4220CZ6: Dual USB 2.0 integrated ESD protection.
rev. 5 ed. s.l.:Nexperia.

57. Nexperia, 2011b. TDZxJ series: Single Zener diodes. rev. 2 ed.
s.l.:Nexperia.

58. Nexperia, 2015. NX7002AK: 60 V, single N-channel Trench MOSFET. v.7
ed. s.l.:Nexperia.

Liam McSherry 101 of 304
EC1520839

59. Nexperia, 2016a. HEF4053B: Triple single-pole double-throw analog
switch. rev. 12 ed. s.l.:Nexperia.

60. Nexperia, 2016b. HEF4067B: 16-channel analog
multiplexer/demultiplexer. rev. 8 ed. s.l.:Nexperia.

61. Nexperia, 2016c. HEF4104B: Quad low-to-high voltage translator with 3-
state outputs. rev. 9 ed. s.l.:Nexperia.

62. Nisarga, B., 2011. PWM DAC Using MSP430 High-Resolution Timer.
s.l.:Texas Instruments.

63. Noctua, 2017a. NF-A20 PWM Premium Fan. s.l.:Rascom
Computerdistribution Ges.m.b.H.

64. Noctua, 2017b. Smooth Commutation Drive. [Online]
Available at: http://noctua.at/en/smooth-commutation-drive
[Accessed 9 September 2017].

65. NXP, 2014. UM10204: I²C-bus specification and user manual. rev. 6 ed.
s.l.:NXP Semiconductors.

66. NXP, 2017a. Application to use NXP Semiconductors USB-IF Vendor
Identification Number. [Online]
Available at: https://contact.nxp.com/vid-use-app
[Accessed 15 September 2017].

67. NXP, 2017b. PCT2075: I²C-bus Fm+, 1 °C accuracy, digital temperature
sensor and thermal watchdog. rev. 10 ed. s.l.:NXP Semiconductors.

68. ON Semiconductor, 2005. TVS/Zener Theory and Design Considerations
Handbook. rev. 0 ed. Phoenix(Arizona): ON Semiconductor.

69. ON Semiconductor, 2013. NL37WZ17: Triple Noninverting Schmitt-
Trigger Buffer. rev. 8 ed. s.l.:ON Semiconductor.

70. ON Semiconductor, 2014. MC14504B: Hex Level Shifter for TTL to CMOS
or CMOS to CMOS. rev. 9 ed. Denver(Colorado): ON Semiconductor.

71. OpenMoko Inc., 2017. USB Product IDs. [Online]
Available at: http://wiki.openmoko.org/wiki/USB_Product_IDs
[Accessed 15 September 2017].

72. Otander, J., 2015. Welcome to pid.codes. [Online]
Available at: http://pid.codes/pidcodes/2015/04/03/welcome/
[Accessed 2015 September 2017].

73. PCI-SIG, 2008. PCI Express® 225 W/300 W High Power Card
Electromechanical Specification. rev. 1.0 ed. s.l.:PCI-SIG.

74. PCI-SIG, 2010. PCI Express® Base Specification – Revision 3.0. s.l.:PCI-
SIG.

75. PCI-SIG, 2017. Become a Member. [Online]
Available at: http://pcisig.com/membership/become-member
[Accessed 15 September 2017].

76. SATA-IO, 2009. Serial ATA Revision 3.0. s.l.:Serial ATA International
Organization.

102 of 304 Liam McSherry
 EC1520839

77. SD Association, 2017. SD Specifications — Part 1: Physical Layer
Simplified Specification. v6.00 ed. s.l.:SD Card Association.

78. SD Association, 2018. How to Start Using SD Standards in Your Product.
[Online]
Available at: https://www.sdcard.org/developers/howto/index.html
[Accessed 23 March 2018].

79. SFF, 2000. SFF-8551J — Form Factor of 5.25" CD Drives. rev. 3.3 ed.
s.l.:Storage Network Industry Association — SFF Technology Affiliate
Technical Working Group.

80. Silicon Labs, 2013a. AN0019: EEPROM Emulation. rev. 1.09 ed.
Austin(Texas): Silicon Labs.

81. Silicon Labs, 2013b. AN0024: EFM32 Pulse Counter. rev. 1.07 ed.
Austin(Texas): Silicon Labs.

82. Silicon Labs, 2013c. AN0046: USB Hardware Design Guide. rev. 1.01 ed.
Austin(Texas): Silicon Labs.

83. Silicon Labs, 2013d. User Manual: Starter Kit EFM32WG-STK3800.
Austin(Texas): Silicon Labs.

84. Silicon Labs, 2014a. EFM32WG Reference Manual. rev. 1.0 ed.
Austin(Texas): Silicon Labs.

85. Silicon Labs, 2014b. EFM32WG990 Datasheet — F256/F128/F64. rev. 1.40
ed. Austin(Texas): Silicon Labs.

86. Silicon Labs, 2017a. AN0014: EFM32 Timers. rev. 1.10 ed. Austin(Texas):
Silicon Labs.

87. Silicon Labs, 2017b. EFM32 Wonder Gecko Software Documentation:
CMU. [Online]
Available at:
https://siliconlabs.github.io/Gecko_SDK_Doc/efm32wg/html/group__
CMU.html
[Accessed 3 February 2018].

88. Silicon Labs, 2017c. Request a Product ID (PID). [Online]
Available at: https://www.silabs.com/products/interface/request-
product-id
[Accessed 15 September 2017].

89. ST, 2017. M24C16-W, M24C16-R, M24C16-F: 16-Kbit I²C bus EEPROM.
rev. 9 ed. s.l.:ST Microelectronics.

90. StarTech.com Ltd, 2018a. 18in Internal 5-pin USB IDC Motherboard
Header Cable – F/F. [Online]
Available at: https://www.startech.com/uk/Cables/USB-2.0/Internal-
and-Panel-Mount/18in-Internal-5-pin-USB-IDC-Motherboard-
Header-Cable~USBINT5PIN
[Accessed 10 March 2018].

Liam McSherry 103 of 304
EC1520839

91. StarTech.com Ltd, 2018b. 6in USB 2.0 Cable – USB A Female to USB
Motherboard 4-pin Header F/F. [Online]
Available at: https://www.startech.com/uk/Cables/USB-2.0/Internal-
and-Panel-Mount/6-USB-A-Female-to-Motherboard-Header-
Adapter~USBMBADAPT
[Accessed 10 March 2018].

92. StatCounter, 2018. Desktop Windows Version Market Share Worldwide —
February 2018. [Online]
Available at: http://gs.statcounter.com/os-version-market-
share/windows/desktop/worldwide
[Accessed 17 March 2018].

93. Sweney, M., 2017. Film and TV streaming and downloads overtake DVD
sales for first time. [Online]
Available at: https://www.theguardian.com/media/2017/jan/05/film-
and-tv-streaming-and-downloads-overtake-dvd-sales-for-first-time-
netflix-amazon-uk
[Accessed 13 September 2017].

94. Tan, L. & Jiang, J., 2013. Digital Signal Processing: Fundamentals and
Applications. 2nd ed. Oxford: Academic Press.

95. Texas Instruments, 2003. CD40109B Types: CMOS Quad Low-to-High
Voltage Level Shifter. rev. B ed. Dallas(Texas): Texas Instruments.

96. Texas Instruments, 2005a. CD54HC4049, CD74HC4049, CD54HC4050,
CD74HC4050 High-Speed CMOS Logic Hex Buffers, Inverting and
Non-Inverting. rev. I ed. Dallas(Texas): Texas Instruments.

97. Texas Instruments, 2005b. SN54LV4053, SN74LV4053A: Triple 2-Channel
Analog Multiplexers/Demultiplexers. s.l.:Texas Instruments.

98. Texas Instruments, 2016. LC Filter Design. A ed. Austin(Texas): Texas
Instruments.

99. Texas Instruments, 2017. INAx180 Low- and High-Side Voltage Output,
Current-Sense Amplifiers. rev. B ed. Austin(Texas): Texas Instruments.

100. Texas Instruments, n.d. Application to Use Texas Instruments
Incorporated Universal Serial Bus Vendor ID. [Online]
Available at:
http://focus.ti.com/en/download/mcu/application_for_sublicense.pdf
[Accessed 15 September 2017].

101. USB-IF, 1997. Universal Serial Bus Common Class Specification. rev. 1.0
ed. s.l.:Universal Serial Bus Implementers Forum.

102. USB-IF, 2000. Universal Serial Bus Specification. rev. 2.0 ed.
s.l.:Universal Serial Bus Implementers Forum.

103. USB-IF, 2004. Universal Serial Bus Device Class Specification for Device
Firmware Upgrade. v1.1 ed. s.l.:Universal Serial Bus Implementers
Forum.

104. USB-IF, 2010. Universal Serial Bus Mass Storage Class — Specification
Overview. rev. 1.4 ed. s.l.:Universal Serial Bus Implementers Forum.

104 of 304 Liam McSherry
 EC1520839

105. USB-IF, 2013. Universal Serial Bus 3.1 Specification. rev. 1.0 ed.
s.l.:Universal Serial Bus Implementers Forum.

106. USB-IF, 2016. USB Class Codes. [Online]
Available at: http://www.usb.org/developers/defined_class
[Accessed 15 October 2017].

107. USB-IF, n.d. Getting a Vendor ID. [Online]
Available at: http://www.usb.org/developers/vendor/
[Accessed 15 September 2017].

108. Walters, K., 2010. Zeners and Transient Voltage Suppressors: Can Either
Device Be Used For The Same Applications?. rev. 0 ed.
Scottsdale(Arizona): Microsemi.

109. Worthington Assembly, 2013a. Design for Manufacturability (DFM): Use
Surface Mount Components (SMT) – Part 1 of Many. [Online]
Available at:
https://www.worthingtonassembly.com/blog/2013/03/22/design-for-
manufacturability-dfm-use-surface-mount-components-smt-part-1-
of-many
[Accessed 30 March 2018].

110. Worthington Assembly, 2013b. Design for Manufacturability (DFM): Use
Surface Mount Components (SMT) – Part 3 of Many. [Online]
Available at:
https://www.worthingtonassembly.com/blog/2013/03/26/design-for-
manufacturability-dfm-use-surface-mount-components-smt-part-3-
of-many
[Accessed 30 March 2018].

Liam McSherry 105 of 304
EC1520839

19. Figures
Figure Page

1 A comparison of the output of a Hall effect sensor when supplied
with a constant current (A) and the expected output when supplied
from a PWM-modulated supply (B)

15

2 A PWM waveform at 60% duty cycle, 3:2 mark–space ratio 16

3 A generic MOSFET-controlled PWM DAC based on an LC filter 23

4 Fourier analysis of a 100 kHz PWM signal at 50% (top) and
75% (bottom) duty cycles

31

5 Calculation of capacitance and inductance for LC filter 32

6 LC filter response at 12.6 V with a 400-ohm load 34

106 of 304 Liam McSherry
 EC1520839

20. Tables
Table Page

1 Types of motor used in computer fans 13

2 Availability of various sizes of bay in typical computer chassis 17

3 Availability of PCI-E auxiliary power connectors on typical
computer power supplies

20

4 Continuous-operation current draw for typical computer fans 21

5 PCI and PCI Express availability on computer motherboards 25

6 Availability of RS-232 connectors on computer motherboards 26

7 Availability of Ethernet ports on computer motherboards 27

8 Availability of USB ports on computer motherboards 28

9 Shortlist of Zener diodes for use in a snubber circuit 35

10 Shortlist of PWM DAC control transistors 37

11 Standard USB class identifiers 43

12 Format of a USB SETUP packet 46

13 Format of the USB bDescriptorType field 47

14 Shortlist of PWM DAC flyback diodes 51

15 Shortlist of PWM DAC inductors 52

16 Shortlist of PWM DAC capacitors 53

17 Cost and availability of various level shifters 55

18 Shortlist of proof-of-concept prototype screw terminals 57

19 Shortlist of proof-of-concept prototype I²C temperature sensors 59

20 Fan header pricing 60

21 Map of required pin functions to available pins 61

22 Microcontroller interrupt dependencies 65

23 Microcontroller peripheral clock dependencies 66

24 Potential division ratios for conditioning fan tachometer output 72

Liam McSherry
EC1520839

107 of 304

Appendix A
Project schedule

108 of 304 Liam McSherry
EC1520839

A
1

P
R

O
P

O
S

E
D

 S
C

H
E

D
U

L
E

W
ee
k

1
2

3

P
la

nn
in

g
 P

ha
se

H
ar

d
w

ar
e

D
es

ig
n

&
 S

im
ul

at
io

n

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

2
0

2
1

2
2

2
3

2
4

H
ar

d
w

ar
e

R
es

ea
rc

h

Fa
n

V
ar

ie
ti

es
 &

 C
o

nt
ro

l

P
o

w
er

 D
el

iv
er

y

H
o

st
-C

o
nt

ro
lle

r
C

o
m

m
un

ic
at

io
n

Fo
rm

 F
ac

to
r

P
re

lim
in

ar
y

H
ar

d
w

ar
e

S
el

ec
ti

o
n

F
ir

m
w

ar
e

R
es

ea
rc

h

C
o

nt
ro

l M
o

d
es

P
ro

to
co

l D
efi

ni
ti

o
n

S
of

tw
ar

e
R

es
ea

rc
h

D
ri

ve
r

S
ta

ck

Im
p

le
m

en
ta

ti
o

n
P

ha
se

H
ar

d
w

ar
e

M
an

uf
ac

tu
ri

ng

F
ir

m
w

ar
e

D
ev

el
o

p
m

en
t

S
of

tw
ar

e
D

ev
el

o
p

m
en

t

F
ir

m
w

ar
e

&
 S

of
tw

ar
e

R
efi

ne
m

en
t

Te
st

in
g

 &
 V

er
ifi

ca
ti

o
n

Ev
al

ua
ti

o
n

P
ha

se

R
ep

o
rt

 E
d

it
in

g
, e

tc
.

L
o

g
b

o
o

k
E

d
it

in
g

P
ro

d
uc

e
P

re
se

nt
at

io
n

D
ev

el
o

p
 P

ro
p

o
se

d
 S

ch
ed

ul
e

Liam McSherry 109 of 304
EC1520839

A2 Revisions to the proposed schedule

The proposed schedule was based around a 24-week period of work. Originally,
it was believed that the implementation phase was to be completed on or before
the 22th of December 2017, with a final deadline on the 23rd of February 2018.
However, as noted in the progress log entry for the 9th of November 2017, these
dates were instead a general recommendation. From that date, the project ceased
to follow the proposed schedule.

The true target date for completion was then known to be the 20th of April 2018
and, although this was not recorded, it was planned to use this additional time to
consider other relevant topics. Despite the proposed schedule no longer applying
to the project, work continued largely following the list of tasks in that schedule
until Thursday the 15th of February 2018.

On the 15th of February 2018, the remaining work and the remaining time were
reviewed. It was considered that a reasonable target for completion of the project
implementation was mid to late March 2018. This was the target worked to from
that date.

In March 2018, it was clarified that the presentation portion of the project would
not need to be completed at the same time as the report (as was assumed when
the proposed schedule was produced).

This target was further reviewed on the 7th and on the 20th of March. No issues
with the schedule were foreseen, and work was progressing as scheduled.

On the 23rd of March, the implementation phase was provisionally completed.

• PAGE INTENTIONALLY LEFT BLANK •

Liam McSherry
EC1520839

111 of 304

Appendix B
Progress log

September 2017

112 of 304 Liam McSherry
 EC1520839

2017

SEPTEMBER

Thursday, 7th
Initial requirements specification completed, comprising: a brief with context,
aim, and objectives; requirements for each aspect of the project; and a proposed
schedule for the completion of the project.

Friday, 8th
Progress log started.

Gantt chart for the proposed schedule (see Appendix A1) started.

Research started, with the findings of research into the available and common
varieties of computer fan added to the “Research and Theory” partition.

Saturday, 9th
Gantt chart for the proposed schedule (see Appendix A1) completed.

Research into the construction and control of fans added.

Sunday, 10th
The section on research into the control of fans provisionally completed. An
explanatory section on pulse width modulation and a section for research into fan
monitoring started.

Monday, 11th
Further research into control and monitoring re PWM control being unusable for
certain varieties of fan (as a result of the commonness of Hall effect sensors), and
alternative speed control strategies.

Form factor research put on hold as it is relatively minor and not expected to take
significant or substantial time to complete.

Tuesday, 12th
Research into fan power requirements and power delivery added. This is in line
with the proposed schedule, where fan variety and control research would be
completed by the 12th with power delivery research starting on the 13th.

Wednesday, 13th
Research into device form factors added, and form factor for the controller
selected with justification.

Thursday, 14th Week 1
Research into host–controller communications interfaces started.

September 2017

Liam McSherry 113 of 304
EC1520839

Friday, 15th
Research into host–controller communications interfaces completed. USB is
selected as the interface to be used.

This is largely in line with the proposed schedule, where host–computer
interfaces research would be completed by the 15th. There has been slight
slippage as little research into power delivery has been done. However, there is
still nearly a week until power delivery research is to be completed.

Saturday, 16th
Research into the power supplies available in a typical computer.

Sunday, 17th
Sources of power available in a typical computer identified, and the most
appropriate sources for the controller selected. The controller is to use a
combination of PCI Express auxiliary power connectors and the power provided
over the USB host–controller interface.

Monday, 18th
Confirming that the current available from the PCI Express auxiliary power
connector is sufficient to power four typical computer fans.

In findings summary, started a list of applicable standards.

Tuesday, 19th
Research into controlling fan supply voltage started.

Thursday, 21st Week 2
Research revealed that use of a low-pass filter to “smooth” a pulse-width
modulated waveform to approximately its average voltage could provide the
means to control the speed of 2-/3-pin fans.

Potential challenges with this method were the voltage drop in the filter and in
the transistor controlling the 12 V supply, causing the actual supply voltage to drop
significantly below 12 V.

Friday, 22nd
Following on from the findings made yesterday, a bipolar junction transistor (BJT)
in a common collector topology with the base driven by the output of a low-pass
filter was identified as a simple method of control.

Work on this is likely on encroach into the time allocated in the proposed
schedule for preliminary parts selection, however seven days was allocated to that
task as a buffer. While this development is not in line with the proposed schedule,
it was anticipated.

Saturday, 23rd
Majority of simulation/etc. work completed, but results must be converted into a
form suitable for inclusion in the report.

October 2017

114 of 304 Liam McSherry
 EC1520839

Sunday, 24th
Results now in form suitable for inclusion in the report, and majority of discussion
on power delivery completed. Some minor discussion remains.

There should be insignificant impact on the “preliminary hardware selection”
task, which the proposed schedule lists as being completed by the 2nd October.

Monday, 25th
Minor discussion on power delivery completed. May require slight updates or
additions as other aspects of the project are explored, but it is not anticipated that
any further significant power delivery-related work will be required in the
planning phase.

Tuesday, 26th
A minor chapter on pulse width modulation (PWM) started on Sunday, 10th
completed.

Wednesday, 27th
Summary of findings updated. Outline for chapter on preliminary hardware
section added.

Thursday, 28th Week 3
Rationale for the selected controller added. The selection of the precise model
of controller is deferred until later, however the Silicon Labs EFM32WG family
was selected, largely as a result of a development kit for the family already being
to hand. It is acknowledged that this might not be the most economical selection,
but the family does fulfil the criteria set out.

Friday, 29th
Begin introduction to power transistor portion of preliminary hardware selection.

Saturday, 30th
Complete the introduction to power transistor portion of preliminary hardware
selection.

OCTOBER

Sunday, 1st
Further work on power transistor preliminary hardware selection. Main
considerations about transistors completed, with heat-sinking considerations in
progress. Once heat-sinking considerations are completed, a final portion on the
preliminary selection bringing together the considerations can be done.

The “driver stack determination” task on the proposed schedule is unlikely to be
completed by the second, but additional time was allocated to the “control modes
determination” task for overrun. The “control modes” task, which is concerned
with the various user-selectable modes of fan control, is not anticipated to take

October 2017

Liam McSherry 115 of 304
EC1520839

the three days scheduled for it.

Monday, 2nd
Begin introduction to driver stack determination chapter.

Tuesday, 3rd
Further research indicated that the previous selection of a common collector BJT
to act as a voltage buffer in the controlling of the voltage supplied to the fan is not
viable. The transistor would dissipate too much heat to be cooled by any
reasonably-sized passive heatsink.

Identified alternative is the use of the PWM DAC with filter directly to provide
power to the fan. Further required work on this is the researching of the
information required for the biasing/etc. of any transistors, as well as preliminary
hardware selection. However, it is anticipated that preliminary hardware
selection for this revised method will be simpler.

This is a significant setback and is likely to affect the proposed schedule.
Significant work must be done before the 6th in order for the critical path to
remain on-schedule. However, as the proposed schedule did not include
weekends in its allocated time, this may be feasible.

Wednesday, 4th
Discussion of voltage control technique provisionally completed, next step is to
replace the preliminary hardware selection discussion.

Thursday, 5th Week 4
An RLC filter is provisionally identified as the type of filter for the PWM DAC. It
is anticipated that there will be overrun past the 6th, but current progress is good
and, barring any further setbacks, it is not anticipated that there will be great
delays. There is a chance that delays here will result in further delay at the end
of the “protocol definition” task, but the next task after that is “hardware
design/simulation” which, while not simple, is unlikely to throw up any
unexpected hurdles.

Friday, 6th
Component selection for the PWM DAC started. Basics identified, more specific
selection to be done. Unlikely to be as involved as the selection for the previous
method would have been, as most of the components are fairly generic.

Delays still anticipated.

Saturday, 7th
Majority of discussion on the selection of components for the PWM DAC done,
with the remainder of work on the PWM DAC being the selection of a diode for
use in a voltage snubber. There is some uncertainty about whether the PWM DAC
will work as intended, but that work will have minimal impact on the critical path.
Any testing can be done with a simple test assembly in parallel with other tasks,
and—if the PWM DAC is found not to work—use of PWM directly would be an

October 2017

116 of 304 Liam McSherry
 EC1520839

acceptable, if less preferable, alternative. Use of PWM directly would require
simple hardware design adjustments—largely the removal of components only. If
time permits, the effect of PWM on the fan tachometer output could also be
tested to determine whether the output could be conditioned into a usable signal.

Once that is completed, research into the driver stack must be done. After that,
work on defining the protocol for the fan controller must be done. It is expected
that all of this can be completed by the time the next task (hardware
design/simulation) is scheduled to start on the 20th October.

Monday, 9th
The Nexperia TDZ12J is selected as the Zener diode for the snubber circuit. The
discussion related to the justification for this is also completed.

Tuesday, 10th
Discussion, selection of the driver stack completed.

Wednesday, 11th
Begin discussion on control modes. This is not expected to take considerable
time, and should be largely (if not entirely) complete before the 13th, leaving
slightly longer than a week for the protocol definition.

Thursday, 12th Week 5
Control modes discussion provisionally complete. Relatively minor changes and
additions made to discussion related to the PWM DAC and snubber circuit.

Friday, 13th
Reading up on USB to refresh knowledge.

Saturday, 14th
Begin USB-related discussion. Basic plan for the protocol laid out, but specifics
not yet committed to paper.

Sunday, 15th
Complete discussion about how USB devices are identified generally, and in the
specific case of the fan controller. Begin drafting protocol specification.

Monday, 16th
Add provisionally-complete discussion relating to communication with USB
devices and the correct definition of non-standard requests and descriptors for a
USB device. Minor other work done on protocol specification.

Tuesday, 17th
Framework of the device protocol laid out, finer details to be established.

October 2017

Liam McSherry 117 of 304
EC1520839

Wednesday, 18th
Minor work, basics of two USB requests specified.

Thursday, 19th Week 6
USB protocol specification provisionally completed. It is expected that there will
be a need to make modifications as the implementation of the protocol reveals
issues which could not have otherwise been identified.

Friday, 20th
Familiarisation with Autodesk EAGLE schematic capture and layout software.

Process of drafting a preliminary bill of materials for the components identified
during preliminary hardware selection revealed that sourcing or using a 7.8 mH
inductor is infeasible. Adequately-rated inductors around 7.8 mH are comparable
in size to a fist, weigh multiple kilograms, and tend to cost in excess of £20.
However, reducing inductance to a feasible level and increasing capacitance to
compensate was determined in simulation to produce a comparable result.

Minor rework and recalculations expected to carry into tomorrow, but no
significant impact on other work anticipated.

Saturday, 21st
Reworking complete.

Begin the design of the proof-of-concept circuit. The final circuit cannot be made
without first confirming that the PWM DAC works as-designed. A prototype
board is to be designed and manufactured and used with the microcontroller
development kit to verify correct operation.

Sunday, 22nd
Begin write-up on proof-of-concept circuit and component selection for the
ancillary circuit components that will be required for the proof-of-concept (but
which were not covered in the preliminary selection).

Monday, 23rd
Requirements for flyback diode set out.

Tuesday, 24th
Flyback diode selected as the Comchip CDBA540-HF.

Wednesday, 25th
Update proof-of-concept prototype schematic diagram with selected diode, and
begin development kit connection-related work.

The pins for the microcontroller selected for use and the microcontroller on the
development kit are multifunction. A limited number of these pins are exposed
via a pin header on the development kit, and so correct pin use selection is vital
for ensuring that the desired functionality can be tested.

October 2017

118 of 304 Liam McSherry
 EC1520839

Thursday, 26th Week 7
Further work on component selection for the proof-of-concept circuit, and work
on writing up those selections. Tweaks made to previously written-up sections.

Friday, 27th
Selection and related discussion provisionally complete for the PWM DAC
capacitor, power connector, and fan header for the proof-of-concept circuit. It is
not expected that there will be much more selection work until the design of any
final circuit.

Saturday, 28th
Selection and related discussion started, largely completed, for the interface to
the fan tachometer output. Remaining work is largely to do with the comparison
of potential devices.

Further development kit connection-related work done. Modifications made as
required to schematic diagram and circuit layout symbols in EAGLE, and the start
of an exhaustive list of required pin functions is included in the report. The list is
to be completed, and follow-up work from that is the selection of appropriate
connections to the development kit and the updating of the circuit schematic
accordingly.

Sunday, 29th
The fan tachometer interface selection work is completed. The device selected
is the Texas Instruments CD74HC4050M96 (or equivalent), to be used to shift the
voltage level of the tachometer from 12 V to the 3.3 V desired.

Monday, 30th
Corrections made to calculations relating to the selection of the PWM DAC
control transistor. A voltage drop was substituted where a resistance should have
been, resulting in a significantly higher calculated power.

Discussion and selection for the 4-pin fan PWM control interface provisionally
completed. A fan requires the controller to provide an open-collector or open-
drain output, and the FDMS7682 selected for use in the PWM DAC is a more than
suitable choice (if not the most economical option).

Tuesday, 31st
Begin discussion of the monitoring transducers for the fans. Those transducers
being the devices which are to allow the fan controller to monitor the current and
voltage provided for each fan.

Preliminary research shows that monolithic current transducers are expensive,
and so it is more likely that current will be measured by means of the voltage
across a current-sense resistor being fed into an op-amp. Voltage monitoring is
not anticipated as being a challenge.

November 2017

Liam McSherry 119 of 304
EC1520839

NOVEMBER

Wednesday, 1st
Minor updates to the exhaustive list of required pin functions.

Thursday, 2nd Week 8
The Texas Instruments INA180A2IDBVT current-sense op-amp is selected as the
current transducer for use in monitoring currents.

A ratio of 4:1 is selected for the potential divider to be used in measuring the fan
voltage, with absolute resistances of 20 and 5 kiloohms. The potential divider is
a simple means of reducing the voltage so that it can be safely fed to the analogue-
to-digital converter (ADC) on the microcontroller.

The list of required pin functions is provisionally given as three PWM functions,
four ADC channels or functions, and two pulse-counter functions.

Friday, 3rd
Preliminary pin selections for each required function made.

Begin creating parts diagrams for eventual use in circuit schematics. Updates
made to the schematic for the proof-of-concept prototype.

Saturday, 4th
Existing schematic diagrams updated, and schematics for the board-to-external
connections, PWM DAC-controlled fan connection, and bare fan connection
produced. These schematics provisionally complete.

Begin on design rationales for small notes that were not appropriate in the main
hardware selection section. Two such rationales completed.

Sunday, 5th
Add rationale note for the placement of the voltage transducer for the PWM
DAC-controlled fan on the prototype, and correct the relevant portion of the
schematic (which had shown this connection incorrectly before).

Begin circuit board layout.

Monday, 6th
Decision made to include temperature sensor on prototype. This would allow the
prototype to be used in place of any final design for firmware and software
development, and would enable firmware and software to be developed against a
similar target if it becomes clear that there is insufficient time to complete and
have a final design built.

Temperature sensor selection started, expected to be completed tomorrow.

Tuesday, 7th
The NXP PCT2075TP is selected as the temperature sensor. Circuit symbols for
the device for use in EAGLE created.

November 2017

120 of 304 Liam McSherry
 EC1520839

Wednesday, 8th
General work on circuit board design done.

Thursday, 9th Week 9
Further general work on circuit board design done. Design largely completed.

The proposed schedule listed this day as the day hardware manufacturing was to
begin, and the day by which firmware and software development was to be
completed. However, the proposed schedule was made when it was believed that
there would be less time available. Since the making of the proposed schedule, it
has been clarified that a first draft of the report must be submitted by the 23rd of
February 2018 and that the implementation-phase deadline of 22nd December
2017 was a general recommendation and not a rule.

Progress from this point onward will not follow the proposed schedule.

Friday, 10th
Circuit board largely complete, and the manufacturer has provided a quote. The
cost, given initially in dollars, is to be around £61.39 for a single prototype, which
includes the manufacture of a printed circuit board, the cost of components, and
the assembly of the circuit, with a 15-working-day turnaround.

However, in the interest of correctness, final checks will be made before the
prototype is sent for manufacture. It is expected that these can be completed
tomorrow. If successful, it is likely that the design will be sent for manufacture.

Added to the report are minor notes about the selection of a 20-pin female
expansion header for the circuit, and a rationale about the circuit design around
the power MOSFETS.

Saturday, 11th
Circuit board design checked, and appears correct. An additional test point was
added on the 12 V connection. The design was not sent for manufacture, as the
manufacturer does not include weekends in its predicted turnaround time and so
ordering today or tomorrow makes no difference. By postponing ordering until
tomorrow, the design and every component can be double-checked.

Sunday, 12th
Bill of Materials drawn up and present in Appendix F. The circuit could not be
ordered as personal commitments prevented updating the circuit (consequently
from the drawing up of the Bill of Materials revealing that adjusting the selection
of parts—such as selecting resistors in a different form factor—saved cost) and
any double-checking.

Monday, 13th
Circuit updated in consequence of the aforementioned parts changes.

The final cost for the prototype comes to the equivalent of £56.33, with the
inclusion of shipping costs bringing the total cost to around £79.82 (as prices were
given by the manufacturer in dollars, current exchange rates were used to
determine these approximate costs). An order was placed for the prototype at this

November 2017

Liam McSherry 121 of 304
EC1520839

cost, with 15-working-day turnaround giving a projected delivery date of the 4th
of December.

Other minor updates were made to the main report.

Wednesday, 15th
Begin adding circuit schematics, designs to Appendix F.

Thursday, 16th Week 10
Set out basic program specification for proof-of-concept prototype firmware.

Further work on Appendix F.

Friday, 17th
Minor other work on Appendix F, and Appendices F1 to F3 are provisionally
complete.

Information about relevant law transferred to main report body from notes.

Saturday, 18th
Begin further work on proof-of-concept prototype firmware design.

Sunday, 19th
Minor firmware design work.

Monday, 20th
Minor firmware design work.

Tuesday, 21st
Proof-of-concept prototype firmware general design provisionally completed,
but it is expected that changes will be made as the firmware is produced. Should
now be able to progress to writing the firmware, but limited time makes it unlikely
that this will begin before Thursday.

Thursday, 23rd Week 11
General familiarisation with the Silicon Labs “Simplicity Studio” IDE, the device
to be used, and related. Work on device firmware has begun, with the very basic
groundwork for the firmware started.

As the proof-of-concept prototype circuit will not be available before December,
it is anticipated that there could be not insignificant rework required to portions
of firmware produced before receipt.

Friday, 24th
Further familiarisation work, and minor work on firmware. Notable for future
reference is that hardware peripheral interrupts must both be enabled in the
registers which control the peripheral, and in the nested vectored interrupt
controller (NVIC). If NVIC configuration is not performed, the interrupt service

December 2017

122 of 304 Liam McSherry
 EC1520839

routine will never be executed.

Saturday, 25th
Groundwork of microcontroller interrupts required for testing largely in place,
and what is present confirmed to work. Again, complete testing cannot be done
at this time due to the proof-of-concept prototype circuit not being available.

Sunday, 26th
Checking the datasheet for the microcontroller on the development kit indicated
that neither the pulse-counting or PWM functions were available and connected
to pushbutton inputs or LED outputs, respectively, on the development kit. Any
code for operating these peripherals cannot be tested before the proof-of-
concept prototype arrives.

Monday, 27th
Begin work on summary of expenditure.

Tuesday, 28th
Purchase computer fans to be used in testing. Purchases added to the summary
of expenditure.

Thursday, 30th Week 12
Begin drawing up list of interrupt dependencies. As referenced in the entry for
Sunday, 26th, there are multiple configuration options which must be adjusted
before the microcontroller will generate and service and interrupt. Drawing up a
list of these options will hopefully serve to reduce time spent on debugging.

DECEMBER

Friday, 1st
Minor further work on the list of interrupt dependencies.

Saturday, 2nd
List of interrupt dependencies provisionally complete. Begin drawing up list of
clock dependencies.

Each (or nearly each) peripheral or hardware device on the microcontroller can
be individually enabled or disabled to control energy consumption, and so the
relevant clock for that peripheral must be enabled before it can be configured or
used. The list of clock dependencies is hoped to reduce development time, as it
will act as a quick reference of required clocks and negate the need to continually
search through the reference manual.

Sunday, 3rd
List of clock dependencies provisionally complete.

December 2017

Liam McSherry 123 of 304
EC1520839

Monday, 4th
Add USB and DMA (direct memory access) to the list of clock dependencies. Use
of USB (and likely DMA) isn’t required for the basic testing, but the information is
useful to have ready for future reference.

Tuesday, 5th
Despite it not being possible to fully test, begin writing firmware to operate
peripherals. Whatever is written will need to be simple enough that pinpointing
errors (which there are expected to be, given the code is almost entirely untested)
is not overly cumbersome.

Thursday, 7th Week 13
Minor work on test firmware.

Friday, 8th
Minor work on test firmware.

Update the summary of expenditure to remove the postage charge from the entry
for the 28th of November. The postage charge was for delivery on the 30th, but
delivery of the ordered items was late and, as a result, the charge was refunded.

Saturday, 9th
Add to the test firmware code configuring the development kit LCD. Initially it
was believed that it would be required interface with the LCD controller directly,
but Silicon Labs provides a driver which includes convenience functions for the
pictorial segments and for writing alphanumeric characters to the 14-segment
display portions of the LCD.

Sunday, 10th
Update the list of clock dependencies with those for the LCD controller.

Beginnings of a state machine added to the firmware code. Not yet tested as there
was insufficient time today. This style of implementation appears to be the easiest
method (which is also relatively maintainable) for the firmware.

Monday, 11th
Some testing of the firmware, other minor work done.

Tuesday, 12th
Begin producing a test plan for the proof-of-concept prototype.

Thursday, 14th Week 14
Add equipment listing to the test plan.

Work on the project is likely to become less regular in the coming two weeks due
to both an increased workload and the holiday period.

December 2017

124 of 304 Liam McSherry
 EC1520839

Friday, 15th
Begin adding action items to the test plan.

Saturday, 16th
Expand list of action items, update equipment listing with descriptions for the
components and test points referenced in the listing.

Tuesday, 19th
Pre-emptively add taxes, etc. in relation to the proof-of-concept prototype to the
summary of expenditure. As the prototype was manufactured in the United States,
VAT and customs duty must be paid on its entry into the United Kingdom. There
is also a further fee levied by the delivery service as a result of their having to pay
import charges in advance. Were the prototype being manufactured
commercially, it would be likely that such charges could be avoided (in the case
of manufacture in the United Kingdom).

Wednesday, 20th
Minor firmware refactoring to simplify main loop.

Thursday, 21st Week 15
Received proof-of-concept prototype circuit.

It was expected that the proof-of-concept prototype circuit would be received
within a month of ordering. However, as the circuit was instead received a month
and one week after ordering, and as additional equipment (power supplies, signal
generators, oscilloscopes, etc.) is required to test the circuit, there is insufficient
time to test the circuit before the holiday period.

Add to list of action items, and add short notes for each action item explaining its
purpose and giving relevant information.

Friday, 22nd
Add to list of action items, notes for action items. Consequential modifications to
the equipment listing.

Thursday, 28th Week 16

Friday, 29th
Add to Appendix F5 (firmware design resources) discussion about the firmware
design related to measuring fan speed. Next step is to write firmware related to
use of the microcontroller’s pulse counters.

Add minor note to the main report introducing Appendices F6 and F7 (test plan
and test results).

Saturday, 30th
Initialisation firmware for the pulse counters written. Reading the reference
manual in writing the firmware revealed features relevant to the discussion added
yesterday. Begin reworking the relevant portions of the discussion.

December 2017

Liam McSherry 125 of 304
EC1520839

Among these features is the ability to route (internally, in the microcontroller) to
one of the counter’s inputs the output of another peripheral via the “peripheral
reflex system” (PRS). In particular, the PRS is able to route the signal from a timer
firing to the pulse counter, which could enable testing of firmware relying on the
pulse counters before connection of the development kit to the proof-of-concept
prototype, and so could in turn save valuable testing time.

Sunday, 31st
Complete reworking of discussion. Minor other changes to firmware.

January 2018

126 of 304 Liam McSherry
 EC1520839

2018

JANUARY

Monday, 1st
Confirmed that using the peripheral reflex system to trigger the pulse counter
works. A minor modification from the anticipated configuration was required.

If the pulse counter is in “single input oversampling” mode, the input is sampled
on Low Frequency A (LFA) clock pulses, and the LFA clock is 32.768 kHz. This is
an issue, as the PRS bus uses the much higher frequency High Frequency
Peripheral clock (HFPER), which operates at 14 MHz on first start. The signal
transmitted through the PRS is a single HFPER pulse width, and so is seldom
registered by the counter.

However, by adjusting the pulse counter to operate in “single input externally-
clocked oversampling” mode, where rising edges on the input signal are used to
clock the pulse counter, these fast pulses are registered. The impact of this on
functions synchronised to a clock must be investigated. Further, the reference
manual notes (on page 608) that “the external pin clock source must be configured
from the registers in the [Clock Management Unit].” Further changes to
configuration may be required for the real-world use-case, where the signal is
received on an external pin rather than via an internal bus.

Tuesday, 2nd
Largely firmware housekeeping. Code for firmware states separated so that one
state has no access to the other states, and so that the interrupt service routine
for the master periodic timer has no access to the internals of any state.

Now that pulse counting code has been confirmed to work, begin implementing
code for control mode selection. That is, the code which enables selection of one
of the three control mode required by the program specification in the main body
of the report.

Thursday, 4th Week 17
Control mode menu code fully working. There are some limitations in what can
be done—the LCD on the development kit includes seven 14-segment displays
and four 7-segment displays, but the vendor-provided drivers only support the
display of numbers (decimal or hexadecimal) on the 7-segment displays. In order
to display longer messages, basic text-scrolling functionality was implemented
for the 14-segment displays.

To ensure that the current menu option was clear at all times (and not just at a
particular point in the scrolling text), the numeric 7-segment displays were used.
This required the use of mnemonics which could be constructed from the limited
hexadecimal character set accepted by the vendor LCD driver, but it was felt that
another method would worsen clarity rather than improve it.

Friday, 5th
Begin writing code for PWM generation. A minor firmware mistake was made in

January 2018

Liam McSherry 127 of 304
EC1520839

that the low-energy timer (LETIMER0) was configured for use as the master
timer, but is used on the proof-of-concept prototype as the PWM control signal
driver for the fan connected to the PWM DAC. Correction of this mistake only
required the swapping of LETIMER0 for the regular timer TIMER2.

Saturday, 6th
As the operation of the timers in PWM mode is not entirely straightforward, begin
writing a note (included as Appendix F5.3 as of today) explaining the general
principles and operation for use as a reference. No further PWM code written.

In writing the reference note, a potential design issue was uncovered. The low-
energy timer used to provide the fan PWM control signal to the fan connected to
the PWM DAC is driven from the Low Frequency A (LFA) clock. The LCD
controller is also driven from this clock. At present, the clock is configured with
the Low Frequency RC Oscillator (LFRCO) as its source, causing it to operate at
a frequency of 32.768 kHz. The potential design issue is that it is not possible to
divide 32.768 kHz down to 25 kHz with the microcontroller’s clock controls.

However, the LFA clock can also be driven by the HFCORE clock divided by two,
which would result in a frequency of 7 MHz in the current configuration. As the
LCD controller is also driven from the LFA clock, it may be the case that it is not
possible to use the higher-frequency HFCORE in place of LFRCO. This must be
investigated. It is not certain why this issue was not identified in design, as a check
of the timers was made. The assumption going forward is that, during the design
stage, it was expected that LFA would be driven from HFCORE for the LE timer
without considering that the LCD controller was also clocked by LFA.

Sunday, 7th
The potential issue uncovered yesterday is resolved. Through practical testing, it
was confirmed that operating the LCD controller at a higher frequency does not
impact operation in any visible way. The result of this is that the LE timer can be
provided with a suitably high frequency without affecting the LCD controller.

To be specific, the LFA clock which drives the LCD controller and LE timer can
be configured to be driven from (among others) the 32.768 kHz LFRCO, or from
the 7 MHz HFCORECLKLE. The HFCORECLKLE is a derivative of the 14 MHz
HFCORE clock, divided by two before driving the LFA clock. To attain as low a
frequency as possible, the derivative of it provided to the LCD controller can be
further divided by 128 in the CMU_LFAPRESC0 register (giving 54.6875 kHz), and
the LCD framerate derived from this clock can be set up to 4× slower through the
register CMU_LCDCTRL to give an LCD framerate of approximately 13.672 kHz. A
setting to divide HFCORE by 4 is available in CMU_HFCORECLKDIV, but in a brief
test (using values reported by the CMU_ClockFreqGet() function in the “emlib”
library provided by the microcontroller vendor) this did not appear to have any
effect on the LCD clock.

In this configuration, the LE timer is provided with a 7 MHz clock. Using the LE
timer’s prescaler in CMU_LFAPRESC0, and by configuring the timer to count down
from 139, it is possible to produce the 25 kHz required.

Monday, 8th
Complete the note started on Saturday, 6th. The configuration code for the PWM

January 2018

128 of 304 Liam McSherry
 EC1520839

generators is completed. The next step is to write the code for the control modes,
including the code necessary to enable and reconfigure the PWM generators as
required. Minimal on-the-fly reconfiguration is required—the only such changes
would be the state of the generators (enabled or disabled), the duty cycle of the
output waveform, and (for the generators required to provide either 100 kHz or
25 kHz depending on the control mode) the clock frequency to the timer.

Tuesday, 9th
Begin writing code for the control modes, including PWM reconfiguration code.

Fix a minor error in the footnote just after the microcontroller connection table.
The footnote previously said that the pins “PB12 and PD7 are different output
channels for the same PWM function,” which is not accurate—they are different
output channels for the same timer, but PWM functionality is configured on a
per-channel basis (albeit with the limitation that each PWM function outputs a
waveform at the same timer-determined frequency).

Wednesday, 10th
Extremely minor additions to control mode code.

Thursday, 11th Week 18
Photographs of the proof-of-concept prototype and the development kit taken
for inclusion in Appendix F4 (as of writing). Minor additions to the discussion on
the microcontroller’s PWM generators.

It is expected that some testing of the proof-of-concept prototype can be done
tomorrow, although the extent is not known.

Friday, 12th
The proof-of-concept prototype was tested. No action items were completed, as
the testing performed revealed an issue which requires further investigation. The
results of this test, with discussion, was written up in Appendix F7.1.

Saturday, 13th
Further work on the write-up mentioned yesterday, primarily in relation to the
discussion of the results and potential future actions.

Sunday, 14th
Firmware code quality improvements—identify some repeated code segments in
firmware and separate into utility functions; other minor changes.

Monday, 15th
Firmware control modes code preliminarily complete.

Code for all control modes is largely the same, but some trouble was encountered
in separating out the common portions due to the amount of state required. It is
possible, but results in functions with many parameters. May still separate
common portions out.

January 2018

Liam McSherry 129 of 304
EC1520839

Tested basic speed-measurement code using a PRS-connected timer as input to
the appropriate pulse counter. The code worked, but appeared to miss one or two
pulses—with the pulse-generating timer configured for 40 Hz (2400 pulses per
minute, equivalent to 1200 rpm) the code reported 1140 rpm, and with the timer
configured for 25 Hz (1500 ppm or 750 rpm) a speed of 690 rpm was reported.
This may be an issue that results from the clocks in the microcontroller being
synchronised.

An addition to consider is the ability to count more than 255 pulses per period.
This is not a critical feature—few fans are likely to generate more than 255 pulses
in a given measurement period (as, for example, this would be over 15,000 rpm
for a measurement period of a second)—but would be a quality improvement.

Tuesday, 16th
Minor design error discovered while implementing the fan PWM signal control
mode. It appears that the definitions for microcontroller pins PB11 and PB12 (11
and 13 on the expansion header) were reversed. Schematics show that expansion
header pin 13 is TIMER1_CC2, and that 11 is LETIM0_OUT1, but—in fact—the
reverse is true. As both are timer functions capable of producing PWM output,
this design error is inconsequential but does require a review of code to ensure
that the correct timer is used.

This was not caught during design review before manufacturing as that review
incorrectly assumed that the pin definitions were correct, and instead focused on
ensuring that the connections for those pin definitions were correct.

Schematic diagrams in Appendix F are updated accordingly.

Thursday, 18th Week 19
Basic further testing of the proof-of-concept prototype, preliminarily confirming
that a resistor in the circuit is non-functional and may have been causing the issue
which was discovered on Friday, 12th. Summary of the tests and result written up
in Appendix F.

Friday, 19th
Further testing of the proof-of-concept prototype. Action items 1, 2, and 3 (as of
writing) mostly completed. The source of the issue discovered on Friday, 12th was
found. Summary of the work on action item 1 completed, summary of the work
on action item 2 started.

Saturday, 20th
Summary of the work on action items 2 and 3 completed. Summary of the work
on action item 1 updated regarding potential fixes for the issue from Friday, 12th.

Sunday, 21st
Minor changes made to the summaries of action items 1 to 3. In the summary for
action item 3, particular discussion related to the voltage observed at the op-amp
outputs was added. The op-amps were unpowered during the preliminary test,
and so their output may not have been reliable. Action items 1 and 2 were updated
to include a reference to connecting the 3V3 line which powers the op-amps.

January 2018

130 of 304 Liam McSherry
 EC1520839

Also updated the specific considerations in Appendix F relating to measurement
of fan speed. A rolling average was previously discounted but, as the controller
would determine when substantial changes in fan speed occur, a rolling average
could be a viable method.

It was also determined that the pulse-dropping issue discussed on Monday, 15th
may be related to the use of a different pulse counter mode with the PRS.

Monday, 22nd
Begin work on ancillary prototypes. The proof-of-concept prototype tests a key
portion of the project, but work must be done in parallel with its testing in order
to ensure that the project is completed in time.

Ancillary prototypes are to demonstrate what is required to implement other
aspects of the project, such as communication with the host computer over USB.

The first step in this process is to lay out the design requirements for each of the
ancillary prototypes. These are not as extensive as those for the proof-of-concept
prototype, and deal only with specific portions of the project.

Tuesday, 23rd
Additional work on setting out the requirements, specification, etc. for the USB
ancillary prototype. Minor other related work.

Wednesday, 24th
Verified that the development kit appeared to work as intended when powered
from a CR2032 button cell.

Thursday, 25th Week 20
Update list of action items to include pin numbers for the pins referenced in items
for testing which involves only the development kit.

Provisionally complete the section in the main body of the report on the USB
prototype, and begin on Appendix G (ancillary prototypes). Other minor work,
largely editing, done on the report main body.

Friday, 26th
Action items 1, 2, and 7 completed. Some work towards action items 3, 4, and 5
done, but there are issues still to be resolved. Provisionally complete summaries
for the completed action items, minor work done in relation to the other action
items mentioned.

Saturday, 27th
Summaries for action items 3, 4, and 5 provisionally complete.

Begin setting out in Appendix G overview and general considerations for the
firmware portion of the USB prototype.

Sunday, 28th
Determined the cause of the issue with action items 3, 4, and 5 that mentioned

February 2018

Liam McSherry 131 of 304
EC1520839

on Friday, 26th. The issue, that no output was observed on the pins where output
was expected, was a result of there being a requirement for output to be enabled
both in the configuration for the peripheral (in this case, a timer) and in the
configuration for the microcontroller’s GPIO. This written up in Appendix F.

Fixes for the abovementioned issue made to the firmware. Whether this is also
required for other peripherals which take input (such as the pulse counters) is not
known. No mention of input is made in the reference manual, only output. For
the time being, no change will be made for input.

Other minor work on Appendix G.

Monday, 29th
Minor work on Appendix G.

Tuesday, 30th
Arranged for access to an electrical workshop to perform further testing.

Add further action items to Appendix F, with notes.

Wednesday, 31st
Update to the summary of findings, adding minor notes which had not previously
been applied.

FEBRUARY

Thursday, 1st Week 21
Completed action items 3, 4, 5, and 6. Carried out action items 8 and 9. Further
work done in relation to the completed action items 2 and 7. Begin summarising
the results of this work in the test results.

Friday, 2nd
Provisionally completed summary for action items 8 and 9. Summary of further
work done relating to the completed action item 7 added. Begin on summarising
the work carried out in relation to action items 3, 4, and 5.

Saturday, 3rd
Provisionally completed summary for action items 3, 4, 5, and 6.

Sunday, 4th
Minor code quality changes, moving the corrected code for adjusting a timer’s
prescaler (other than during operation) into a utility function.

Begin setting up USB prototype development environment. No real development
work was done as the middleware provided by the microcontroller vendor did not
work without modification.

The middleware used a developer-provided C header file for its configuration,
which the compiler would report could not be found (if the middleware were

February 2018

132 of 304 Liam McSherry
 EC1520839

included in the recommended manner). To fix this, the middleware source was
required to be copied from its default location into the working directory. Here,
the compiler then reported that a number of data types were not defined. These
types, uint8_t (unsigned 8-bit integer) and uint16_t (unsigned 16-bit integer)
were manually defined, using the definitions provided with the middleware (but
which were inactivated by pre-processor directives).

Once these changes were applied, the code—a main function empty but for a call
to the errata-fixing CHIP_Init function provided by the vendor’s libraries for the
microcontroller—compiled successfully.

Monday, 5th
Add action item 10 to Appendix F. Compile a list (not included in the report) of
the steps to be taken for the completion of action items 8 and 9.

Minor additions to USB prototype firmware setup code.

Tuesday, 6th
Make modifications to proof-of-concept firmware needed for action item 10.

Clock configuration code for USB prototype provisionally complete, untested.

Wednesday, 7th
Tested clock configuration code for USB prototype, confirmed to work.

Thursday, 8th Week 22
Complete action item 10, further work in relation to action items 8 and 9. Begin
summarising the work done in Appendix F.

Friday, 9th
Complete additions to summary for action items 8 and 9.

Saturday, 10th
Complete summary for action item 10.

Sunday, 11th
Update proof-of-concept prototype firmware documentation, check that all fixes
are applied as necessary, and other minor code quality changes. Add proof-of-
concept firmware code to Appendix C and format.

Monday, 12th
Begin in Appendix G remarks relating to the USB prototype. First item added to
the remarks is a description of the errors mentioned on Sunday, 4th. Also applied
code quality changes to the fix for that issue.

Tuesday, 13th
Add to Appendix G general discussion about the development of firmware for the
USB prototype. Research into use of the vendor USB driver, with minor code

February 2018

Liam McSherry 133 of 304
EC1520839

additions to the firmware. Also confirmed that the Universal Windows Platform
library for interfacing with WinUSB was usable in a non-UWP program.

Wednesday, 14th
Significant work towards achieving basic USB configuration. Basic configuration
enables verification that the software making use of WinUSB is working, and is
required to implement demonstrator firmware emulating the protocol specified
in Appendix D.

Thursday, 15th Week 23
Considering the work remaining, it is not likely that the project will be completed
within the recommended 24-week period. However, this was expected from the
outset, and work was started early to ensure that the project would be completed
before the final deadline on the 20th of April. While it is difficult to predict the
exact time required, the current target is to finish work on the project in mid to
late March, with the remaining time allocated to the final writing up, editing, and
review, and having the report printed.

Basic USB configuration achieved. The development kit was programmed with
the firmware and connected to a host computer. The host computer indicated it
had acknowledged the device. Device identification was observed using the
Microsoft Message Analyser tool (see below).

As discussed in the report, the VID–PID pair 1209:0001 is a pair allocated for use
privately and in testing by John Otander (of pid.codes). As can be seen, there was
a slight error in that a space was missed in the reported name of the device, but
this is cosmetic (and so largely inconsequential).

Friday, 16th
Contacted a printers’ and was advised that a typical turnaround of 2 days was
available (depending on work volume) with plastic comb binding.

Begin adding discussion to Appendix G relating to the Microsoft OS Descriptors
specification’s operation. Also confirmed that USB v2.1 operation is required, and
made changes to the firmware as necessary to attain basic USB v2.1 configuration.

Saturday, 17th
Minor corrections to Appendix F.

Attained WinUSB configuration, with the operating system loading WinUSB for
the device automatically on connection. Not yet successful in producing software
which can access the USB device.

Sunday, 18th
Further work towards software access for the WinUSB device. Believed that it is

February 2018

134 of 304 Liam McSherry
 EC1520839

necessary to register a device interface GUID, which is ostensibly possible by
providing particular Microsoft-specific USB descriptors. The USB device is set to
provide such a descriptor, but Windows reports that the descriptor is invalid. As
the cause of its being invalid is not apparent, work continues.

Monday, 19th
Software access to the USB device through WinUSB attained. The operating
system was unable to recognise the device until the order of descriptors provided
by the device was switched. The reason for this being significant is not clear, but
this means that it is now possible to begin implementing the Appendix D protocol.

Tuesday, 20th
Begin adding to Appendix G discussion on the sensors prototype. There does not
appear to be sufficient time remaining before the 20th of April to design, produce,
and test a sensors prototype, and so what would be done to produce a sensors
prototype will be discussed in Appendix G2.

Wednesday, 21st
Further work on Appendix G discussion on the sensors prototype.

Thursday, 22nd Week 24
Minor corrections to Appendix D.

Begin implementing the Appendix D protocol in firmware and software, and add
to Appendix G discussion and remarks relating to this implementation.

Further work relating to the sensors prototype.

Friday, 23rd
Format the proposed schedule Gantt chart for use in Appendix A1 and reconcile
differences between it and the main report summary, which has not been updated
since it was first written (and which, for example, used a 30th March deadline and
not the 20th April deadline which was later clarified).

Minor correction to a reference in the main report.

Saturday, 24th
Minor corrections to Appendices D and G.

Implement the GET_FAN_ID USB request in firmware and software, untested, and
update the discussion for both firmware and software in Appendix G.

Sunday, 25th
Tested the implementation of the GET_FAN_ID request, correct an error in the
implementation, and update software and firmware discussion in Appendix G.

Begin implementing the SET_FAN_MODE request—foundational code written for
accepting, processing, and responding to user input while maintaining the status
output, and the basics of a command language (for specifying Appendix D mode
data) set out. The discussion in Appendix G updated.

March 2018

Liam McSherry 135 of 304
EC1520839

Modify Appendix D list of USB requests to specify the bmRequestType value in
writing rather than giving an opaque binary value.

Monday, 26th
Add to Appendix G sensors prototype discussion on I²C peripheral initialisation.

Tuesday, 27th
Provisionally complete Appendix G sensors prototype discussion section on I²C
initialisation. Begin working on I²C communication discussion.

Wednesday, 28th
Provisionally complete I²C-related discussion for the sensors prototype.

MARCH

Thursday, 1st Week 25
Provisionally complete (and test) the software implementation of SET_FAN_MODE,
and do minor work towards implementing the firmware portion. Appropriate
updates to the discussion in Appendix G made.

Friday, 2nd
Minor corrections to Appendix D.

Provisionally complete (and test) the firmware SET_FAN_MODE implementation,
and correct defects in the software implementation. Discussion on the topic in
Appendix G updated. The next step is implementing GET_FAN_MODE.

Saturday, 3rd
Provisionally complete the USB prototype, and update Appendix G discussion on
its implementation. Begin and largely complete inserting code into Appendix C.

Sunday, 4th
Finish inserting code into Appendix C. It is not expected that any further changes
will need to be made to this appendix, other than adjusting the page numbers for
final printing.

Begin sensors prototype discussion relating to current and voltage sensing.

Monday, 5th
Further work on sensors prototype current and voltage sensing.

Tuesday, 6th
Minor work on sensors prototype current and voltage sensing discussion.

Wednesday, 7th
Provisionally complete sensors prototype (and Appendix G) discussion. The next

March 2018

136 of 304 Liam McSherry
 EC1520839

step in the implementation of the project to produce recommendations for a final
design based on what was learned from the prototypes. When that is completed,
the evaluation phase of the project can begin.

This is in line with the timescale discussed on Thursday, 15th of February.

Thursday, 8th Week 26
Begin work on a section of the main report making recommendations for a final
fan controller design. This is the last general stage before the evaluation phase
can begin, and should be completed by mid to late March.

Portions added include minor discussion on the host–controller interface, and
the start of discussion on power delivery.

Friday, 9th
Further work on power delivery discussion. Discussion added considers which
USB connector or connectors should be used, with a start made on the discussion
relating to circuit protection if the Intel-specified internal USB header is used.

Saturday, 10th
Revise some discussion added yesterday. Further work on protection and control
in the fan controller, including discussion on specific methods. It is expected that
this will be completed tomorrow.

Sunday, 11th
Provisionally complete discussion on power delivery. Begin work on discussion
relating to the computer fans (control, monitoring, etc.).

Monday, 12th
Minor work on fan speed monitoring—knowledge gained from testing the proof-
of-concept prototype, the selection of simple supply modulation rather than use
of the PWM DAC for speed control, and the proposed conditioning for the output
of the tachometer.

Tuesday, 13th
Minor further work on fan speed monitoring. Considerable time spent attempting
to understand Schmitt trigger datasheet which, on comparison with other similar
datasheets, appeared incomplete—the sheet provided the maximum positive-
going voltage, the minimum negative-going voltage, and the minimum hysteresis
voltage, and no other relevant data. The minimum positive-going and maximum
negative-going and hysteresis voltages, for example, were not provided. A device
with a complete datasheet was chosen as the recommendation going forward.

Wednesday, 14th
Provisionally complete discussion on fan speed monitoring. Minor work on the
discussion on fan speed control.

March 2018

Liam McSherry 137 of 304
EC1520839

Thursday, 15th Week 27
Minor corrections to discussion on fan speed monitoring.

Provisionally complete discussion on fan speed control, fan supply voltage and
current monitoring, and fan functionality monitoring. Work on the structuring of
remaining production design-related sections to be completed.

Friday, 16th
Minor corrections to Appendix F.

Provisionally complete discussion on form factor.

Saturday, 17th
Begin discussion on the host computer driver stack.

Sunday, 18th
Add note to power delivery discussion on protection against the inductive flyback
a fan will produce when disconnected from the supply, and include a prospective
short-circuit current estimate for the 12 V supply.

Provisionally complete discussion on the host computer driver stack.

Begin discussion on the host–controller protocol.

Monday, 19th
Minor corrections to Appendix G.

Minor work on host–controller protocol discussion.

Tuesday, 20th
Further work on host–controller protocol discussion. This discussion is likely to
be completed tomorrow. Once this is completed, the aim is to add discussion for
miscellaneous aspects of a production design, for completion in late March in line
with the target set on Thursday, 15th of February.

Wednesday, 21st
Provisionally complete host–controller protocol discussion.

Begin setting out structure of miscellaneous discussion.

Thursday, 22nd Week 28
Add further suggestion for a specific change to the host–controller protocol.

Discussion on the expansion of available ADC channels and on the upgrading of
fan controller firmware added. The former is provisionally complete.

Friday, 23rd
Provisionally complete discussion set out on Wednesday, 21st of March. If no
further discussion topics are identified, the project can move to the evaluation
phase in line with the schedule set out on Thursday, 15th of February.

April 2018

138 of 304 Liam McSherry
 EC1520839

Sunday, 25th
Begin on a “Conclusion and Review” partition with a critical evaluation of the
aim, objectives, and requirements. The evaluation for the aim completed, with an
evaluation of the schedule objective largely completed.

Add to Appendix A2 a summary of revisions made to the proposed schedule.

Monday, 26th
Provisionally complete the evaluation of the schedule objective. The evaluation
of the technical knowledge objective provisionally completed.

Tuesday, 27th
Minor corrections to Appendix C.

Add discussion on non-removable storage to the miscellaneous discussion on the
production design for a fan controller.

Provisionally complete the evaluation of the documentation objective. Begin on
the evaluation of the per-unit cost objective.

Wednesday, 28th
Provisionally complete evaluation of the per-unit cost objective.

Thursday, 29th Week 29
Provisionally complete the evaluation of the development cost objective. A final
figure cannot be known until this report is printed but, given that spending before
printing equals £133.54, it can be said with certainty that the objective is met. The
final figure can be added to the evaluation once it is known.

Provisionally complete the evaluation of the test suite objective.

Begin evaluation of the standards compliance objective.

Friday, 30th
Provisionally complete evaluation of the standards compliance objective, largely
complete the evaluation of the design for manufacturing objective.

Saturday, 31st
Provisionally complete the evaluation of the design for manufacturing objective.

Begin evaluation of the hardware requirements.

APRIL

Sunday, 1st
Provisionally complete evaluation of the hardware and firmware requirements.

April 2018

Liam McSherry 139 of 304
EC1520839

Monday, 2nd
Provisionally complete evaluation of the software requirements.

Add and format references, list of figures, and list of tables.

Tuesday, 3rd
Add tables of contents for each partition, minor editing work.

Wednesday, 4th
Provisionally complete abstract. Begin preparing for print.

Thursday, 5th Week 30
Review and proofread the main body of the report to chapter 13.

Delete Figure 4, the related discussion, and Appendix C1. These portions of the
report added nothing and were partially incorrect. Minor style-related and other
changes made at numerous points as part of the review and proofreading.

Friday, 6th
Review, proofread, and edit up to chapter 16.4.

Saturday, 7th
Complete proofreading, etc. of the main body of the report.

It is considered that Appendix B (this appendix) does not require review, as there
is little discussion, and the discussion present is written in an abbreviated form.

Review and proofread Appendix C. The source code in Appendix C has not been
proofread or reviewed, as this was done when it was added to the appendix.

Review and proofread Appendix D.

Appendix E is not considered to require review, as its content is largely a set of
tables and not discussion.

Review, proofread, and edit Appendix F to Appendix F7.6.

Sunday, 8th
Complete proofreading, etc. of Appendix F and Appendix G.

Assemble document for print and request quotes from a number of printers.

Monday, 9th
Report sent for printing, and Appendix E and the evaluation of the development
cost objective are updated to reflect the cost of printing.

• PAGE INTENTIONALLY LEFT BLANK •

Liam McSherry
EC1520839

141 of 304

Appendix C
Source Code

C1 LC Filter Underdamped Response Plot 142

C2 Proof-of-Concept Prototype Firmware 143

C3 USB Prototype — Firmware 173

C4 USB Prototype — Software . 190

C5 PWM DAC High-Z Response Plot 215

142 of 304 Liam McSherry
 EC1520839

C1 LC Filter Underdamped Response Plot

The following is the source code for the script, written in R, used to plot the figure
showing the response of the PWM DAC’s LC filter when a 400-ohm load is
connected, as shown in Figure 6 on page 34.

Data exported from SPICE in two columns: 1

1 Time 2

2 Voltage 3

Data <- read.table("Waveform-400R-Load-No-Snub", header=TRUE) 4

Time <- Data[,1] 5

V <- Data[,2] 6

 7

Seconds to milliseconds 8

Time <- Time * 1000 9

 10

Plot voltage with grid 11

plot(Time, V, type="l", 12

 xlab="Time (ms)", xlim=c(0, 12), 13

 ylab="Filter Voltage (V)", ylim=c(0, 30), 14

 lab=c(6, 6, 7), lwd=2) 15

 16

grid() 17

 18

Mark maximum 19

abline(h=24.34, v=NULL, col="red") 20

points(x=0.14868, y=24.34, col="red", pch=16) 21

text(x=0.3, y=26, "24.4 V", col="red") 22

 23

Mark supply 24

abline(h=12.6, v=NULL, col="blue") 25

arrows(x0=10, y0=8, x1=10, y1=12.6, 26

 length=0.125, lwd=2, col="blue") 27

text(x=10, y=6.2, "12.6 V\n(Supply)", col="blue") 28

 29

Mark difference 30

arrows(x0=7.09, y0=12.6, x1=7.09, y1=24.34, 31

 code=3, length=0.125, lwd=2) 32

text(x=7.65, y=18.4, "11.8 V") 33

 34

Title etc. 35

title("LC Filter Response at 12.6V with 400-ohm Load") 36

Liam McSherry 143 of 304
EC1520839

C2 Proof-of-Concept Prototype Firmware

The following is the source code for the proof-of-concept prototype firmware,
written in C. The firmware controls the ARM Cortex-M4F microcontroller on a
Silicon Labs EFM32WG-STK3800 development kit to operate the prototype as
required to carry out the tests in Appendix F6.

main.c
The firmware entry point, and general microcontroller configuration.

/* Author: Liam McSherry 1

 * Date: 11th February 2018 2

 * Notes: Entry point and configuration. Initial chip and 3

 * peripheral config. is done in this file. 4

*/ 5

 6

// Standard C headers 7

#include <stdbool.h> 8

#include <stdint.h> 9

#include <limits.h> 10

// Device-specific headers for the EFM32WG990-F256 chip. 11

#include "em_device.h" 12

#include "em_chip.h" 13

#include "em_cmu.h" 14

#include "em_gpio.h" 15

#include "em_timer.h" 16

#include "em_pcnt.h" 17

#include "em_letimer.h" 18

#include "em_prs.h" 19

#include "segmentlcd.h" 20

// Functions etc. from the development kit board support package. 21

#include "bsp.h" 22

// Firmware headers 23

#include "config.h" 24

#include "states.h" 25

 26

// Local function prototypes 27

void configure_Clocks(void); 28

void configure_masterTimer(void); 29

void configure_GPIO(void); 30

void configure_LCD(void); 31

void configure_PCNT(void); 32

void configure_emulatedFan(void); 33

void configure_PWM(void); 34

 35

// Entry point 36

int main(void) 37

{ 38

 // Initialisation, erratum fixes, calibration, etc. 39

 CHIP_Init(); 40

144 of 304 Liam McSherry
 EC1520839

 41

 // Microcontroller set-up. 42

 configure_Clocks(); 43

 configure_GPIO(); 44

 configure_LCD(); 45

 configure_PCNT(); 46

 configure_emulatedFan(); 47

 configure_masterTimer(); 48

 configure_PWM(); 49

 50

 /* Infinite loop */ 51

 while (1) { 52

 } 53

} 54

 55

// Configures the clocks for the chip. 56

void configure_Clocks(void) { 57

 // Clocks configured are those set out in chapter 14.4 of 58

 // the main report, and are those clocks required for all 59

 // peripherals listed (except USB). 60

 // 61

 // The processor core clock (HFCORE) is driven by HFRCO at 62

 // 14 MHz on start, per manual section 11.3.2. We therefore 63

 // don't need to enable this oscillator or do any 64

 // configuration for it. 65

 // 66

 // The low-energy derivative of HFCORE, called HFCORECLKLE, is 67

 // initially set to be HFCORE divided by 2, but the divisor 68

 // can be set to 4. 69

 // 70

 // ULFRCO is fixed at 1 kHz. 71

 72

 // Configure Low-Frequency Clock A (LFA) to use HFCORECLKLE. 73

 CMU_ClockSelectSet(cmuClock_LFA, cmuSelect_HFCLKLE); 74

 75

 76

 // Enable clocks for timers 0 to 3 77

 CMU_ClockEnable(cmuClock_TIMER0, true); 78

 CMU_ClockEnable(cmuClock_TIMER1, true); 79

 CMU_ClockEnable(cmuClock_TIMER2, true); 80

 CMU_ClockEnable(cmuClock_TIMER3, true); 81

 82

 // Enable clock for low-energy peripheral access 83

 CMU_ClockEnable(cmuClock_CORELE, true); 84

 85

 // Enable clock for low-energy timer 0 86

 CMU_ClockEnable(cmuClock_LETIMER0, true); 87

 88

 // Enable clock for analogue-to-digital converter 0 89

 CMU_ClockEnable(cmuClock_ADC0, true); 90

 91

Liam McSherry 145 of 304
EC1520839

 // Enable clocks for pulse counters 0 and 2 92

 CMU_ClockEnable(cmuClock_PCNT0, true); 93

 CMU_ClockEnable(cmuClock_PCNT2, true); 94

 95

 // Enable clock for I2C bus 1 96

 CMU_ClockEnable(cmuClock_I2C1, true); 97

 98

 // Enable clock for general-purpose I/O 99

 CMU_ClockEnable(cmuClock_GPIO, true); 100

 101

 // Enable clock for direct memory access 102

 CMU_ClockEnable(cmuClock_DMA, true); 103

 104

 // Enable clock for PRS use. 105

 CMU_ClockEnable(cmuClock_PRS, true); 106

 107

 // The manual instructs that changes to these values should be 108

 // made before the clock for the LCD controller is enabled (or 109

 // while it's disabled). If this were not this case, this 110

 // additional configuration would be in the [configure_LCD] 111

 // function. 112

 // 113

 // Divide HFCORECLKE by 128 (LCD controller frequency is 114

 // ~54.6875 kHz). 115

 CMU_ClockDivSet(cmuClock_LCDpre, cmuClkDiv_128); 116

 //CMU->LFAPRESC0 |= CMU_LFAPRESC0_LCD_DIV128; 117

 // The LCD frame-rate is the controller frequency divided by 118

 // x+1, so x = 3 -> F.R. == 54.6875 kHz/4 == 13.672 kHz. 119

 CMU_LCDClkFDIVSet(3); 120

 // Clock enables 121

 CMU_ClockEnable(cmuClock_LCDpre, true); 122

 CMU_ClockEnable(cmuClock_LCD, true); 123

} 124

 125

// Configure TIMER2 as 10ms periodic timer. 126

// 127

// TIMER0/1 and LETIMER0 are used to drive the fans, and TIMER3 is 128

// used to emulate a fan in testing, so TIMER2 must be used for 129

// master timer. Although, it would be possible to swap the uses 130

// of TIMER2/3, it wouldn’t make any real code difference. 131

// 132

// The SysTick timer included with the ARM processor in the 133

// microcontroller could be used, but it isn't fixed frequency. 134

// Instead, firmware is required to use a value (indicating the 135

// number of ticks per 10ms) to calculate the required interval as 136

// a number of ticks. Using TIMER2 with a known and fixed 137

// frequency, the need for calculation is largely removed. The 138

// downside is that this particular timer won't be guaranteed 139

// portable between ARM processors, but that's highly unlikely to 140

// be an issue. 141

void configure_masterTimer(void) { 142

146 of 304 Liam McSherry
 EC1520839

 // The timer is driven from the High-Frequency Peripheral 143

 // Clock (HFPER), which pulses at 14MHz when the 144

 // microcontroller first starts. The timer has a prescaler and 145

 // can be configured to only fire once it has counted a 146

 // certain number of times. If the timer is configured to 147

 // count up, its firing period is given by the following 148

 // formula: 149

 // 150

 // Time = (1/HFPER) * Prescale * (Period_Adjust + 1) 151

 // 152

 // To achieve the 10ms master timer period, the following 153

 // values are used: 154

 // Prescale = 8 155

 // Period_Adjust = 17499 (0x445B) 156

 // 157

 // These values are reflected in the configuration. 158

 159

 // The bulk of the initialisation data for the timer. 160

 const TIMER_Init_TypeDef init = { 161

 // The timer is disabled and not counting after 162

 // initialisation. 163

 .enable = false, 164

 // The timer does not continue to count in debug mode. 165

 .debugRun = false, 166

 // Divide the timer-driving clock by 8 167

 .prescale = timerPrescale8, 168

 // The timer is driven from HFPER 169

 .clkSel = timerClkSelHFPerClk, 170

 // The timer does not count at 2x counting rate 171

 .count2x = false, 172

 // Don't always track input polarity (since we aren't 173

 // using inputs) 174

 .ati = false, 175

 // Take no action on falling/rising input edges (since we 176

 // aren't using the inputs anyway) 177

 .fallAction = timerInputActionNone, 178

 .riseAction = timerInputActionNone, 179

 // Don't clear DMA requests for the timer 180

 .dmaClrAct = false, 181

 // The timer counts up to the Period_Adjust value 182

 .mode = timerModeUp, 183

 // We aren't using the quadrature decoder, so this doesn't 184

 // matter 185

 .quadModeX4 = false, 186

 // The timer counts continuously until stopped by software 187

 .oneShot = false, 188

 // The timer is not stopped/started/reloaded by other 189

 // timers 190

 .sync = false 191

 }; 192

 193

Liam McSherry 147 of 304
EC1520839

 // We're using TIMER2 as TIMER0/1 and LETIMER0 are used to 194

 // drive the fans, and TIMER3 is used to provide an emulated 195

 // fan tachometer signal during testing. 196

 TIMER_Init(TIMER2, &init); 197

 198

 // Enable interrupt generation and handling 199

 TIMER_IntEnable(TIMER2, TIMER_IF_OF); 200

 NVIC_EnableIRQ(TIMER2_IRQn); 201

 202

 // Set the period adjust value 203

 TIMER_TopSet(TIMER2, 0x445B); 204

 205

 // Start the timer 206

 TIMER_Enable(TIMER2, true); 207

} 208

 209

// Configures GPIO for: 210

// o using the development kid LEDs (PE2 and PE3); 211

// o receiving interrupts from the first pushbutton on the 212

// development kit (PB9). 213

// 214

// Note that on-the-fly GPIO configuration used with the fan 215

// control modes is done in the state handlers for those states, 216

// and not by this function. 217

void configure_GPIO(void) { 218

 // Port E configured for low-current drive 219

 GPIO_DriveModeSet(gpioPortE, gpioDriveModeLowest); 220

 // Pins PE2..3 configured for push-pull output at drive 221

 // strength. These pins are connected to the LEDs on the 222

 // development kit. 223

 GPIO_PinModeSet(gpioPortE, 2, gpioModePushPullDrive, 0); 224

 GPIO_PinModeSet(gpioPortE, 3, gpioModePushPullDrive, 0); 225

 226

 227

 // Set up the interrupts for PB9 and PB10, which are connected 228

 // to the pushbuttons on the development kit. 229

 GPIO_ExtIntConfig(230

 gpioPortB, // Port B is the source 231

 9, // On Port B, pin 9 is the input 232

 9, // External interrupt 9 (hard-wired, ignored) 233

 false, // Don't trigger on the rising edge 234

 true, // Trigger on the falling edge 235

 true // Enabled 236

); 237

 238

 GPIO_ExtIntConfig(gpioPortB, 10, 10, false, true, true); 239

 240

 // Pins PB9, 10 to input with filter enabled (to debounce the 241

 // buttons) 242

 GPIO_PinModeSet(gpioPortB, 9, gpioModeInput, true); 243

 GPIO_PinModeSet(gpioPortB, 10, gpioModeInput, true); 244

148 of 304 Liam McSherry
 EC1520839

 245

 // Clear all GPIO interrupts 246

 GPIO_IntClear(0xFFFFFFFFU); 247

} 248

 249

// Configures the 160-segment LCD on the development kit. 250

void configure_LCD(void) { 251

 const LCD_Init_TypeDef init = { 252

 // LCD controller is enabled after configuration 253

 .enable = true, 254

 // LCD on the development kit has 8 commons, so needs 255

 // 8-way multiplexing if all segments are to be used. 256

 .mux = lcdMuxOctaplex, 257

 // The bias level for the LCD: the number of distinct 258

 // voltage steps in the common voltage provided to the 259

 // LCD. Per AN0057, LCDs with 5 to 8 multiplexed common 260

 // lines require 1/4 bias. I don't pretend to fully 261

 // understand this. 262

 .bias = lcdBiasOneFourth, 263

 // Normal wave output (other option is low-power). 264

 .wave = lcdWaveNormal, 265

 // LCD voltage is the microcontroller supply voltage 266

 .vlcd = lcdVLCDSelVDD, 267

 // Contrast is adjusted relative to the LCD common 268

 // voltage. 269

 .contrast = lcdConConfVLCD, 270

 }; 271

 272

 LCD_Init(&init); 273

 274

 // Enables all segments for use 275

 LCD_SEGMENTS_ENABLE(); 276

 277

 // Start with LEDs all off 278

 SegmentLCD_AllOff(); 279

} 280

 281

// Configures the pulse counter (PCNT) to track the number of 282

// pulses 283

void configure_PCNT(void) { 284

 // See Appendix F5.2 for considerations specific to fan speed 285

 // measurement. 286

 287

 // Due to the way the PRS works, the sampling mode must be 288

 // changed if it is used to emulate a tachometer. PRS pulses 289

 // are only a single clock pulse long, and so synchronising 290

 // the counters with a clock could result in the counter 291

 // sampling entirely missing the single pulse. 292

 // 293

 // Instead, when the PRS is in use, the counters are clocked 294

 // by their input. This results in some pulses being dropped, 295

Liam McSherry 149 of 304
EC1520839

 // but otherwise correct operation is maintained. 296

#ifdef Config_FanEmu_PrsIncludes 297

 const PCNT_Mode_TypeDef pcntMode = pcntModeExtSingle; 298

#else 299

 const PCNT_Mode_TypeDef pcntMode = pcntModeOvsSingle; 300

#endif 301

 302

 const PCNT_Init_TypeDef init = { 303

 // How the pulse counter is samples input (see above). 304

 .mode = pcntMode, 305

 // The counter value starts at zero. 306

 .counter = 0, 307

 // The top counter value is the maximum that can be stored 308

 // in an unsigned 8-bit integer (the greatest value 309

 // capable of being stored by all pulse counters). 310

 .top = 255, 311

 // The counter monitors for positive pulse edges. This 312

 // hopefully will prevent the issue referred to in 313

 // Appendix F5.2. 314

 .negEdge = false, 315

 // The counter counts up. 316

 .countDown = false, 317

 // No requirement for a pulse to last 5 clock cycles. 318

 .filter = false, 319

 // Over/underflow to TOP/2 is disabled. 320

 .hyst = false, 321

 // The counter's S1 input does not determine counting 322

 // direction. 323

 .s1CntDir = false, 324

 // The main counter only counts on up-count events. Since 325

 // we aren't using the quadrature decoding mode, this only 326

 // serves to ensure that any potential (and unlikely) 327

 // down-count events are ignored, and that up-count events 328

 // are processed. 329

 .cntEvent = pcntCntEventUp, 330

 // The auxiliary counter does not respond to count events. 331

 .auxCntEvent = pcntCntEventNone, 332

 // The peripheral response system (PRS) channels to be 333

 // used for the counter's S0 and S1 inputs. We don't want 334

 // to use these, but we have to provide a value. 335

 .s0PRS = pcntPRSCh0, 336

 .s1PRS = pcntPRSCh0 337

 }; 338

 339

 // Route GPIOs to the pulse counter inputs. 340

 PCNT0->ROUTE = PCNT_ROUTE_LOCATION_LOC3; // PD6 341

 PCNT2->ROUTE = PCNT_ROUTE_LOCATION_LOC0; // PD0 342

 // Configure GPIOs to be used as inputs to the counters. These 343

 // must be set as inputs or no signal is transmitted to the 344

 // counters. Configured to use the controller's internal pull- 345

 // down resistors. 346

150 of 304 Liam McSherry
 EC1520839

 // 347

 // PD6 (PCNT0) 348

 GPIO_PinModeSet(gpioPortD, 6, gpioModeInputPull, 0); 349

 // PD0 (PCNT2) 350

 GPIO_PinModeSet(gpioPortD, 0, gpioModeInputPull, 0); 351

 352

 // Configure PCNT0 and PCNT2, the counters used in the 353

 // prototype, as above. PRS inputs are disabled by default. 354

 PCNT_Init(PCNT0, &init); 355

 PCNT_Init(PCNT2, &init); 356

} 357

 358

// Configuration related to testing the pulse counters. Generally, 359

// the setup required to internally (within the controller) 360

// generate a pulse that can be registered by the pulse counters. 361

// 362

// Configures the Peripheral Reflex System for signal transmission 363

// from Timer 3 to the pulse counters (i.e. connect Timer 3's 364

// overflow signal to channel 0, which the pulse counters are 365

// configured to listen on). 366

// 367

// Configures Timer 3 to initially pulse at 2,400 ppm (40 Hz). 368

void configure_emulatedFan(void) { 369

 // For emulating a fan tachometer, we want to use the PRS to 370

 // transmit a signal from a timer to the pulse counters. We're 371

 // going to use TMR3, since we'll be using TMR0 and TMR1 for 372

 // PWM output and we don't want to accidentally have one 373

 // interfere with the other. 374

 PRS_SourceSignalSet(375

 // Route signal to PRS channel 0 376

 0, 377

 // Signal source is TIMER3 378

 PRS_CH_CTRL_SOURCESEL_TIMER3, 379

 // Use the TIMER3 Overflow signal as a trigger 380

 PRS_CH_CTRL_SIGSEL_TIMER3OF, 381

 // Trigger on the positive signal edge 382

 prsEdgePos 383

); 384

 385

 // The timer firing period is given by the following equation 386

 // (for a timer configured in up-count mode): 387

 // 388

 // Time = (1/HFPER) * Prescale * Period_Adjust 389

 // 390

 // Where: 391

 // HFPER is 14 MHz 392

 // Prescale is given by configuration 393

 // Period_Adjust is given by configuration 394

 // 395

 // To achieve 40 Hz (25 milliseconds), the following values 396

 // are to be used: 397

Liam McSherry 151 of 304
EC1520839

 // Prescale = 16 398

 // Period_Adjust = 21875 (0x5573) 399

 const TIMER_Init_TypeDef init = { 400

 // Timer is disabled and not counting after 401

 // configuration 402

 .enable = false, 403

 // Timer does not continue to count in debug mode 404

 .debugRun = false, 405

 // Divide the driving clock by 8 406

 .prescale = timerPrescale16, 407

 // Timer is clocked by the High Frequency Peripheral 408

 // Clock, which runs at the same 14MHz as HFCORE 409

 // (produced by HFRCO) unless configured 410

 // otherwise (which we aren't going to do). 411

 .clkSel = timerClkSelHFPerClk, 412

 // Don't count at the 2x rate 413

 .count2x = false, 414

 // Don't always track input polarity 415

 .ati = false, 416

 // Do nothing on falling/rising input edges (since we 417

 // don't use inputs) 418

 .fallAction = timerInputActionNone, 419

 .riseAction = timerInputActionNone, 420

 // Don't clear DMA requests 421

 .dmaClrAct = false, 422

 // Timer counts up to the Period_Adjust value 423

 .mode = timerModeUp, 424

 // We aren't using the quadrature decoder, so this 425

 // value doesn't matter 426

 .quadModeX4 = false, 427

 // Timer counts continuously (not just once) 428

 .oneShot = false, 429

 // Timer is not stopped/started/reloaded by other timers 430

 .sync = false 431

 }; 432

 433

 // Initialise Timer 3 434

 TIMER_Init(TIMER3, &init); 435

 436

 // Set the Period_Adjust value 437

 TIMER_TopSet(TIMER3, 0x5573); 438

 439

 // Start the timer 440

 TIMER_Enable(TIMER3, true); 441

} 442

 443

152 of 304 Liam McSherry
 EC1520839

// Configures the timers for PWM fan control 444

void configure_PWM(void) { 445

 // PWM is provided by the microcontroller's timers. For 446

 // reference, the timers are used for the following functions: 447

 // 448

 // TIMER0 CC1 Fan (PWM DAC), PWM DAC input 449

 // --- 450

 // TIMER1 CC1 Fan (Bare), fan ground 451

 // CC2 Fan (Bare), PWM control signal 452

 // --- 453

 // LETIMER0 OUT1 Fan (PWM DAC), PWM control signal 454

 // 455

 // The shared use of TIMER1 isn't a problem, as no situation 456

 // has been foreseen that would require modulating the fan 457

 // supply and providing a standard PWM control signal at the 458

 // same time. 459

 460

 // The formula is the same used in [configure_masterTimer], 461

 // except that the target period is 10 microseconds. This 462

 // means that the timers will default to the 100kHz PWM 463

 // frequency required for the PWM DAC input and supply 464

 // modulation, but also enables easy reconfiguration to the 465

 // 25kHz frequency required for the PWM control signal. 466

 // 467

 // In this case, using the 14MHz HFPER signal, a prescaler 468

 // value of 1 and a Period_Adjust value of 139 is required to 469

 // produce 100kHz. To produce 25kHz from this, the prescaler 470

 // can be adjusted to 4. 471

 // 472

 // This configuration is effectively equivalent to that used 473

 // for the master timer. PWM is configured using the 474

 // Capture/Compare (CC) channels, rather than the timer 475

 // itself. 476

 const TIMER_Init_TypeDef timer_init = { 477

 .enable = false, 478

 .debugRun = false, 479

 .prescale = timerPrescale4, 480

 .clkSel = timerClkSelHFPerClk, 481

 .count2x = false, 482

 .ati = false, 483

 .fallAction = timerInputActionNone, 484

 .riseAction = timerInputActionNone, 485

 .dmaClrAct = false, 486

 .mode = timerModeUp, 487

 .quadModeX4 = false, 488

 .oneShot = false, 489

 .sync = false 490

 }; 491

 // The configuration for the low-energy timer (LETIMER0) is 492

 // slightly different by reason of its different interface, 493

 // but the effect is equivalent. 494

Liam McSherry 153 of 304
EC1520839

 // 495

 // Importantly, LETIMER0 would normally be driven by the 496

 // 32.768kHz LFRCO, but this would make it impossible to 497

 // produce the 21-28kHz output needed for fan control. 498

 // Instead, LETIMER0 is driven by the 7MHz HFCORECLKLE (a 499

 // division of HFCORECLK by 2). As with the normal timers, a 500

 // TOP value of 139 is used, but this time a prescaler of 2 501

 // (rather than 4) is required to produce 25kHz. 502

 const LETIMER_Init_TypeDef letimer_init = { 503

 .enable = false, 504

 .debugRun = false, 505

 // Don't start counting when the real-time clock (RTC) 506

 // matches values in either COMP0 or COMP1 507

 .rtcComp0Enable = false, 508

 .rtcComp1Enable = false, 509

 // When the timer counter underflows, reload the value of 510

 // COMP0 into the TOP register (i.e. the value to count 511

 // down from). 512

 .comp0Top = true, 513

 // When the repeat counter REP0 reaches zero, do not load 514

 // COMP1 into COMP0. 515

 .bufTop = false, 516

 // Outputs are low when the timer is in the idle state 517

 .out0Pol = 0, 518

 .out1Pol = 0, 519

 // When the timer underflows while the repeat counter is 520

 // non-zero, do nothing on output zero. 521

 .ufoa0 = letimerUFOANone, 522

 // When the timer underflows while the repeat counter is 523

 // non-zero, become active when the timer matches COMP1. 524

 // Regardless of repeat counter state, return to idle on 525

 // underflow. 526

 .ufoa1 = letimerUFOAPwm, 527

 // The timer continues to count until stopped by software. 528

 .repMode = letimerRepeatFree 529

 }; 530

 531

 // Timer initialisation with above values 532

 TIMER_Init(TIMER0, &timer_init); 533

 TIMER_Init(TIMER1, &timer_init); 534

 LETIMER_Init(LETIMER0, &letimer_init); 535

 536

 // Configure timers for PWM 537

 // 538

 // For the regular timers, this is configured on a per-CC- 539

 // -channel basis. 540

 const TIMER_InitCC_TypeDef timer_cc_init = { 541

 // Settings for input, irrelevant as we're using the 542

 // channel for output. Disregard these values. 543

 .eventCtrl = timerEventEveryEdge, 544

 .edge = timerEdgeBoth, 545

154 of 304 Liam McSherry
 EC1520839

 .prsSel = timerPRSSELCh0, 546

 // Do nothing when the timer counter under- or overflows. 547

 .cufoa = timerOutputActionNone, 548

 .cofoa = timerOutputActionNone, 549

 // When the timer counter matches the CC channel value 550

 // (stored in the register TIMERn_CCx_CCV), toggle the 551

 // state of the output. 552

 // 553

 // The effect of this is that modifying the channel value 554

 // modifies the duty cycle of the output PWM waveform. 555

 .cmoa = timerOutputActionToggle, 556

 // The CC channel is in PWM mode. As far as I can tell, 557

 // the bulk of this mode is (1) the channel value is 558

 // buffered to avoid any glitches in output, and (2) the 559

 // output is returned to the high state each time the 560

 // timer overflows. 561

 .mode = timerCCModePWM, 562

 // Digital filter on inputs. As we're outputting, not 563

 // required. 564

 .filter = false, 565

 // We don't want to take input from a PRS channel, either. 566

 .prsInput = false, 567

 // In PWM mode, determines the state of the output 568

 // immediately on being enabled. 569

 .coist = false, 570

 // The output is not inverted. 571

 .outInvert = false 572

 }; 573

 // And we'll be using the same configuration for each channel. 574

 TIMER_InitCC(TIMER0, /* CC */ 1, &timer_cc_init); 575

 TIMER_InitCC(TIMER1, 1, &timer_cc_init); 576

 TIMER_InitCC(TIMER1, 2, &timer_cc_init); 577

 578

 // Fortunately, we can set the register values once. 579

 // Configuring the timers for 100kHz allows simple changing to 580

 // 25kHz by adjusting the prescaler. 581

 // 582

 // Regular timers are to be divided by 1 for 100kHz, and the 583

 // low-energy timer by to 2 for 25kHz. Note that the LE timer 584

 // is only used for 25kHz operation, and so is configured to 585

 // 25kHz immediately. 586

 _util_TIMER_PrescalerSet(TIMER0, 1); 587

 _util_TIMER_PrescalerSet(TIMER0, 1); 588

 CMU_ClockDivSet(cmuClock_LETIMER0, cmuClkDiv_2); 589

 // In all cases, the counter "top" value is 139. For the LE 590

 // timer, the top value is given by the COMP0 register value. 591

 TIMER_TopSet(TIMER0, Config_PWM_TimerCompareValue); 592

 TIMER_TopSet(TIMER1, Config_PWM_TimerCompareValue); 593

 LETIMER_CompareSet(LETIMER0, 0, Config_PWM_LETimerCompareValue); 594

 // Set the duty cycle to zero in all cases. It doesn't appear 595

 // particularly relevant whether the duty cycle starts at 0% 596

Liam McSherry 155 of 304
EC1520839

 // or 100%, but starting at 0% does mean that no PWM signal 597

 // will be provided (and hence, portions of the circuit won't 598

 // be energised) without microcontroller intervention. 599

 // 600

 // For the regular timers, the duty cycle is controlled by the 601

 // channel value. For the LETIMER, it is controlled by COMP1. 602

 TIMER_CompareSet(TIMER0, 1, 0); // TIMER0 CC1 603

 TIMER_CompareSet(TIMER1, 1, 0); // TIMER1 CC1 604

 TIMER_CompareSet(TIMER1, 2, 0); // TIMER1 CC2 605

 LETIMER_CompareSet(LETIMER0, 1, 0); 606

 // In addition, the low-energy timer will only generate PWM 607

 // output if both its repeat counter registers are non-zero. 608

 // The manual does not specify that these are decremented at 609

 // all, so a simple value of 1 should suffice. 610

 LETIMER_RepeatSet(LETIMER0, 0, 1); // LETIMER0 REP0 611

 LETIMER_RepeatSet(LETIMER0, 1, 1); // LETIMER0 REP1 612

 613

 // Output must also be enabled for the GPIOs, otherwise the 614

 // PWM signal will not appear on the microcontroller's pins. 615

 // Configured for standard (6mA) drive strength, defaulted to 616

 // the low state. 617

 GPIO_PinModeSet(gpioPortB, 11, gpioModePushPull, 0); 618

 GPIO_PinModeSet(gpioPortB, 12, gpioModePushPull, 0); 619

 GPIO_PinModeSet(gpioPortC, 0, gpioModePushPull, 0); 620

 GPIO_PinModeSet(gpioPortD, 7, gpioModePushPull, 0); 621

} 622

irq.c
The code for handling peripheral interrupt requests.

/* Author: Liam McSherry 1

 * Date: 15th January 2018 2

 * Notes: Interrupt request (IRQ) handlers. 3

*/ 4

 5

// Standard C headers 6

#include <stdint.h> 7

#include <stdbool.h> 8

// Device-specific headers for the EFM32WG990-F256 9

#include "em_gpio.h" 10

#include "em_timer.h" 11

#include "em_letimer.h" 12

#include "em_pcnt.h" 13

#include "segmentlcd.h" 14

// Firmware headers 15

#include "states.h" 16

 17

/* Functions named [*_IRQHandler] are declared by the vendor- 18

 * provided code for use with the microcontroller, and so 19

 * providing definitions is all that is required here. 20

 */ 21

156 of 304 Liam McSherry
 EC1520839

 22

// Interrupt handler for timer 2 (master timer)'s interrupts. 23

void TIMER2_IRQHandler(void) { 24

 // The current state we're in. 25

 static enum State state = stateIdle; 26

 27

 28

 // Clear the master timer interrupt flag. 29

 TIMER_IntClear(TIMER2, TIMER_IF_OF); 30

 31

 // GPIO interrupt flags 32

 const uint32_t GPIO_IF = GPIO_IntGet(); 33

 34

 35

 // If we're idling... 36

 if (state == stateIdle) { 37

 state = StateHandler_Idle(GPIO_IF); 38

 } 39

 // If we're waiting for a control mode to be selected... 40

 else if (state == stateMenu) { 41

 state = StateHandler_Menu(GPIO_IF); 42

 } 43

 // If we're in one of the control modes... 44

 else if (state == stateModePwmDac) { 45

 state = StateHandler_ModePwmDac(GPIO_IF); 46

 } 47

 else if (state == stateModeSupplyModulate) { 48

 state = StateHandler_ModeSupplyModulate(GPIO_IF); 49

 } 50

 else if (state == stateModeFanPwmControl) { 51

 state = StateHandler_ModeFanPwmControl(GPIO_IF); 52

 } 53

 54

 // Clear any GPIO interrupts 55

 GPIO_IntClear(0xFFFFFFFFU); 56

}57

config.h
A header containing general configuration-related definitions.

/* Author: Liam McSherry 1

 * Date: 8th February 2018 2

 * Notes: General configuration data and flags. 3

*/ 4

 5

#ifndef SRC_CONFIG_H_ 6

#define SRC_CONFIG_H_ 7

 8

// The values loaded into the compare registers of the timers. 9

#define Config_PWM_TimerCompareValue (139) 10

#define Config_PWM_LETimerCompareValue (139) 11

Liam McSherry 157 of 304
EC1520839

 12

 13

// The values to be placed in TIMER3's TOP register to set the 14

// rate at which pulses are generated for fan emulation. 15

#define Config_FanEmu_4000rpm (6562) // 8000ppm 16

#define Config_FanEmu_2400rpm (10936) // 4800ppm (60% 8000ppm) 17

#define Config_FanEmu_1200rpm (21875) // 2400ppm 18

#define Config_FanEmu_750rpm (36457) // 1440ppm (60% 2400ppm) 19

#define Config_FanEmu_600rpm (43749) // 1200ppm 20

#define Config_FanEmu_420rpm (62499) // 840ppm (70% 1200ppm) 21

 22

// The timer used to produce the emulated tachometer output. 23

#define Config_FanEmu_Timer (TIMER3) 24

 25

// Defining causes the inclusion of fan emulation PRS code where 26

// appropriate. 27

#undef Config_FanEmu_PrsIncludes 28

 29

#endif /* SRC_CONFIG_H_ */30

states.h
Provides definitions required for interfacing with code in states.c.

/* Author: Liam McSherry 1

 * Date: 1st February 2018 2

 * Notes: Definitions for states.c. 3

*/ 4

 5

#ifndef SRC_STATES_H_ 6

#define SRC_STATES_H_ 7

 8

#include <stdbool.h> 9

 10

// Current firmware state 11

enum State { 12

 // Doing nothing, not yet received input. 13

 stateIdle, 14

 15

 // Selecting control modes. 16

 // 17

 // The program specification in section 14.4 of the report 18

 // requires that three modes be supported, and this state is 19

 // to be used to select the desired mode. 20

 stateMenu, 21

 22

 // Each of the control modes: 23

 // - PWM DAC; speed control by lowering the absolute voltage 24

 // supplied to the fan. 25

 // - Supply modulation; speed control by lowering the average 26

 // voltage supplied to the fan through pulse width 27

 // modulation. 28

158 of 304 Liam McSherry
 EC1520839

 // - PWM control; speed control using the PWM control signal 29

 // line to the fan. 30

 stateModePwmDac, 31

 stateModeSupplyModulate, 32

 stateModeFanPwmControl 33

}; 34

 35

enum State StateHandler_Idle(const uint32_t); 36

enum State StateHandler_Menu(const uint32_t); 37

enum State StateHandler_ModePwmDac(const uint32_t); 38

enum State StateHandler_ModeSupplyModulate(const uint32_t); 39

enum State StateHandler_ModeFanPwmControl(const uint32_t); 40

 41

bool _util_TIMER_PrescalerSet(TIMER_TypeDef*, const uint8_t); 42

 43

#endif /* SRC_STATES_H_ */44

states.c
Contains the code for each of the states the firmware can be in, along with utilities
relevant to the states.

/* Author: Liam McSherry 1

 * Date: 11th February 2018 2

 * Notes: State-handling code, plus utilities, for handling all 3

 * states. 4

*/ 5

 6

// Standard C headers 7

#include <stdint.h> 8

#include <stdbool.h> 9

#include <string.h> 10

// Device-specific headers for the EFM32WG990-F256 11

#include "em_cmu.h" 12

#include "em_timer.h" 13

#include "em_letimer.h" 14

#include "em_gpio.h" 15

#include "em_pcnt.h" 16

#include "segmentlcd.h" 17

// Firmware headers 18

#include "states.h" 19

#include "config.h" 20

 21

// The bits representing the first and second pushbuttons on the 22

// development kit in the GPIO interrupt flags register. 23

#define PUSHBUTTON_0 (1 << 9) 24

#define PUSHBUTTON_1 (1 << 10) 25

 26

// Helper function to scroll text across the LCD. 27

// 28

// Parameters: 29

// text = The text to display. May be longer than the 7 30

Liam McSherry 159 of 304
EC1520839

// characters that the display would otherwise 31

// support displaying. 32

// offset = The offset into the string. Increase to proceed 33

// through the string. If the offset is greater than 34

// the string length, it is wrapped around to zero. 35

void _util_ScrollText(const char* text, uint32_t offset); 36

// Helper function for displaying a pulse count as RPM on the 37

// numeric LCD. 38

// 39

// Parameters: 40

// pcnt = The pulse counter the count of which is to 41

// be used. 42

// samplesPerMin = The number of times per minute this function 43

// is used to sample the pulse count. 44

void _util_DisplayRPM(PCNT_TypeDef* pcnt, const uint8_t samplesPerMin); 45

 46

 47

// Function executed on each tick in the idle state 48

// 49

// Parameters: 50

// GPIO_IF = GPIO interrupt state 51

enum State StateHandler_Idle(const uint32_t GPIO_IF) { 52

 // Whether this is the first run. 53

 static bool firstRun = true; 54

 55

 // The state we'll report on return. 56

 enum State state = stateIdle; 57

 58

 // If this is the first run, display "IDLE" on the LCD. 59

 if (firstRun) { 60

 SegmentLCD_Write("IDLE"); 61

 firstRun = false; 62

 } 63

 64

 // If the either pushbutton is pressed, we want to move to the 65

 // menu state. 66

 if (GPIO_IF & (PUSHBUTTON_0 | PUSHBUTTON_1)) { 67

 // Reset the first run indicator 68

 firstRun = true; 69

 // Transition to control mode menu state 70

 state = stateMenu; 71

 } 72

 73

 return state; 74

} 75

 76

// Function executed on each tick in the menu state. 77

enum State StateHandler_Menu(const uint32_t GPIO_IF) { 78

 // Whether this is the first run. 79

 static bool firstRun = true; 80

 81

160 of 304 Liam McSherry
 EC1520839

 // State reported on return 82

 enum State state = stateMenu; 83

 // Whether the LEDs should blink. 84

 // 85

 // We're going to make the LEDs steady as we progress from the 86

 // menu, to the confirmation, and to the control mode. 87

 static bool led_Change0 = true, 88

 led_Change1 = true; 89

 90

 91

 // Blink LEDs while waiting for input 92

 static uint8_t led_ctr = 0; 93

 // Time counted before un-lighting and lighting the LEDs, in 94

 // 10ms ticks 95

 const uint8_t led_TimeUnlight = 74, 96

 led_TimeLight = 124; 97

 // Switch lights on to start with 98

 if (firstRun) { 99

 GPIO_PinOutSet(gpioPortE, 2); 100

 GPIO_PinOutSet(gpioPortE, 3); 101

 102

 firstRun = false; 103

 } 104

 // Un-light LEDs after three quarters of second 105

 // Re-light LEDs after a further half second 106

 else if (led_ctr++ == led_TimeUnlight || 107

 led_ctr == led_TimeLight) { 108

 109

 if (led_Change0) { GPIO_PinOutToggle(gpioPortE, 2); } 110

 if (led_Change1) { GPIO_PinOutToggle(gpioPortE, 3); } 111

 112

 if (led_ctr == led_TimeLight) { 113

 led_ctr = 0; 114

 } 115

 } 116

 117

 118

 // The options in the menu 119

 static enum { 120

 pwmDac, // PWM DAC control mode 121

 modSupply, // Supply modulation control mode 122

 fanPwm // Fan PWM control 123

 } menuState = pwmDac; 124

 // Whether we're waiting for the user to confirm their choice 125

 static bool waitingConfirm = false; 126

 127

 // If we're waiting for confirmation of a choice... 128

 if (waitingConfirm) { 129

 // Time, offset counters for scrolling text 130

 static uint8_t time = 0, offset = 0; 131

 132

Liam McSherry 161 of 304
EC1520839

 // Further instructional text 133

 if (time++ == 34) { 134

 _util_ScrollText(" PB0 CONFIRM - PB1 BACK", offset++); 135

 time = 0; 136

 } 137

 138

 // If pushbutton 1 is pressed, no longer wait for 139

 // confirmation. We check pushbutton 1 first so that, if 140

 // both buttons are pressed, we default to the safe 141

 // option. 142

 if (GPIO_IF & PUSHBUTTON_1) { 143

 // No longer awaiting 144

 waitingConfirm = false; 145

 146

 // We want LED0 to start blinking again 147

 led_Change0 = true; 148

 149

 // If the LEDs have been un-lit, un-light LED0 too. 150

 if (led_ctr > led_TimeUnlight) { 151

 GPIO_PinOutClear(gpioPortE, 2); 152

 } 153

 154

 // Reset the text position 155

 time = 0; 156

 offset = 0; 157

 158

 // Display dashes to make display change clear. 159

 SegmentLCD_Write("-------"); 160

 } 161

 // If pushbutton 0 is pressed, state transition. 162

 else if (GPIO_IF & PUSHBUTTON_0) { 163

 // Depending on the current menu selection, set the 164

 // state we're to enter on returning from this 165

 // handler. 166

 switch (menuState) { 167

 case pwmDac: state = stateModePwmDac; break; 168

 case modSupply: state = stateModeSupplyModulate; break; 169

 case fanPwm: state = stateModeFanPwmControl; break; 170

 } 171

 172

 // Light both LEDs 173

 GPIO_PinOutSet(gpioPortE, 2); 174

 GPIO_PinOutSet(gpioPortE, 3); 175

 176

 // No longer awaiting confirmation 177

 waitingConfirm = false; 178

 179

 // Reset LED change settings 180

 led_Change0 = true; 181

 led_Change1 = true; 182

 183

162 of 304 Liam McSherry
 EC1520839

 // Reset time, offset 184

 time = 0; 185

 offset = 0; 186

 187

 // Reset LED counter 188

 led_ctr = 0; 189

 190

 // Reset first run state 191

 firstRun = true; 192

 193

 // Clear number display 194

 SegmentLCD_NumberOff(); 195

 196

 // Clear LEDs 197

 GPIO_PinOutClear(gpioPortE, 2); 198

 GPIO_PinOutClear(gpioPortE, 3); 199

 200

 // Display dashes to make display change clear. 201

 SegmentLCD_Write("-------"); 202

 } 203

 } 204

 // Otherwise... 205

 else { 206

 static uint8_t time = 0, offset = 0; 207

 208

 // Scroll instructional text, moving one space every 350ms 209

 // Space at the start to make it easier to read the first 210

 // character. 211

 if (time++ == 34) { 212

 _util_ScrollText(" PB0 SELECT - PB1 NEXT", offset++); 213

 time = 0; 214

 } 215

 216

 // If pushbutton 0 is pressed, move to waiting for 217

 // confirmation. 218

 if (GPIO_IF & PUSHBUTTON_0) { 219

 // Now awaiting confirmation 220

 waitingConfirm = true; 221

 222

 // First LED stop blinking, remain lit 223

 led_Change0 = false; 224

 GPIO_PinOutSet(gpioPortE, 2); 225

 226

 // Reset time, offset 227

 time = 0; 228

 offset = 0; 229

 230

 // Write dashes to LCD. 231

 // If the user presses the buttons at the right time, 232

 // it may not be clear that anything has changed (as 233

 // both texts start with PB0 and so may initially 234

Liam McSherry 163 of 304
EC1520839

 // appear identical). 235

 SegmentLCD_Write("-------"); 236

 } 237

 // If pushbutton 1 is pressed, move to the next option. 238

 else if (GPIO_IF & PUSHBUTTON_1) switch (menuState) { 239

 case pwmDac: menuState = modSupply; break; 240

 case modSupply: menuState = fanPwm; break; 241

 case fanPwm: menuState = pwmDac; break; 242

 } 243

 244

 // We're a bit short on screen real estate, so we're going 245

 // to cheat a bit and use the numeric display. There 246

 // aren't many good mnemonics, but as long as they're 247

 // somewhat related to the control mode and not too 248

 // similar it should work fine. 249

 switch (menuState) { 250

 // Mnemonic: DAC as in PWM DAC 251

 case pwmDac: SegmentLCD_UnsignedHex(0xDAC); break; 252

 // Mnemonic: 5FE7 -> SFET -> Supply FET -> Supply 253

 // modulation 254

 case modSupply: SegmentLCD_UnsignedHex(0x5FE7); break; 255

 // Mnemonic: 57DC -> STDC -> Standard (PWM) control 256

 case fanPwm: SegmentLCD_UnsignedHex(0x57DC); break; 257

 } 258

 } 259

 260

 return state; 261

} 262

 263

// Function executed in the PWM DAC control mode state. 264

enum State StateHandler_ModePwmDac(const uint32_t GPIO_IF) { 265

 // Whether this is the first run. 266

 static bool firstRun = true; 267

 // Represents the duty cycle variants required by the program 268

 // spec. 269

 static enum { 270

 duty100, // Operate PWM DAC at 100% duty cycle 271

 duty60, // Operate PWM DAC at 60% duty cycle 272

 } modeVariant; 273

 // Keeps count of elapsed 10ms ticks. Use of a uint32_t means 274

 // we don't have to worry about overflows, as no overflow will 275

 // occur for more than a year if operating continuously. 276

 static uint32_t ticks = 0; 277

 278

 279

 // The state reported on return 280

 enum State state = stateModePwmDac; 281

 282

 283

 // If this is the first run, we want to set up everything 284

 // needed for the PWM DAC control mode. 285

164 of 304 Liam McSherry
 EC1520839

 if (firstRun) { 286

 firstRun = false; 287

 288

#ifdef Config_FanEmu_PrsIncludes 289

 // Enable input to the pulse counter via PRS. This allows 290

 // us to emulate a connected fan's tachometer without 291

 // actually having a fan connected to the controller. 292

 // 293

 // Also configure the PRS-connected pulse generator to 294

 // pulse at the right rate to emulate 1200rpm. 295

 PCNT_PRSInputEnable(PCNT0, pcntPRSInputS0, true); 296

 TIMER_TopSet(TIMER3, Config_FanEmu_1200rpm); 297

#endif 298

 299

 // The PWM DAC is connected to TIMER0 CC1 for its control 300

 // input, with the fan PWM input connected to TIMER1 CC2. 301

 // However, as we aren't using the fan PWM input in this 302

 // mode, we can ignore this output. A standard fan 303

 // operates at maximum duty cycle with no control signal. 304

 // 305

 // The CC1 output must be on PC0. 306

 307

 // Configure the timer for 100% duty cycle operation. The 308

 // regular timer outputs a constant high signal when its 309

 // compare value is set above the top value. 310

 _util_TIMER_PrescalerSet(TIMER0, 1); 311

 TIMER_CompareSet(TIMER0, 1, Config_PWM_TimerCompareValue + 1); 312

 313

 // Set the duty mode variable to reflect this setting 314

 modeVariant = duty100; 315

 316

 // Route CC1 output to PC0 (which is location 4) and 317

 // enable output. 318

 TIMER0->ROUTE = TIMER_ROUTE_LOCATION_LOC4 | 319

 TIMER_ROUTE_CC1PEN; 320

 321

 // Start the timer and hence PWM generation 322

 TIMER_Enable(TIMER0, true); 323

 } 324

 325

 // Display instructions: PB0 to go back, PB1 to go through 326

 // duty cycles Ticks divided by 35 so we scroll one character 327

 // every ~350ms 328

 _util_ScrollText(" PB0 BACK - PB1 DUTY", ticks / 35); 329

 330

 // On the first tick and every second after that, read the 331

 // pulses counted by the pulse counter, convert to RPM, and 332

 // display the speed. 333

 if (ticks % 100 == 0) { 334

 // We use PCNT0 and, as measurements are per-second, 60 335

 // samples/min. 336

Liam McSherry 165 of 304
EC1520839

 _util_DisplayRPM(PCNT0, 60); 337

 } 338

 339

 // Check PB1 first so that pressing both buttons defaults to 340

 // duty. 341

 if (GPIO_IF & PUSHBUTTON_1) { 342

 uint8_t duty = 0; 343

 344

 switch (modeVariant) { 345

 // If we're on 100% duty cycle, switch to 60%. 346

 case duty100: { 347

 modeVariant = duty60; 348

 // Our duty cycle is out of 140, so 60% is 84/140. 349

 duty = 84; 350

 351

#ifdef Config_FanEmu_PrsIncludes 352

 // Set fan tachometer emulator to pulse at 353

 // 1200rpm. 354

 TIMER_TopSet(TIMER3, Config_FanEmu_750rpm); 355

#endif 356

 } break; 357

 // If we're on 60% duty cycle, switch to 100%. 358

 case duty60: { 359

 modeVariant = duty100; 360

 duty = Config_PWM_TimerCompareValue + 1; 361

 362

#ifdef Config_FanEmu_PrsIncludes 363

 // Set fan tachometer emulator to pulse at 600rpm. 364

 TIMER_TopSet(TIMER3, Config_FanEmu_1200rpm); 365

#endif 366

 } break; 367

 } 368

 369

 TIMER_CompareSet(TIMER0, 1, duty); 370

 } 371

 // If PB0 is pressed, we want to return to the menu state. 372

 else if (GPIO_IF & PUSHBUTTON_0) { 373

 // Next state is the menu state 374

 state = stateMenu; 375

 376

 // Reset ticks, first run 377

 ticks = 0; 378

 firstRun = true; 379

 380

 // Disconnect the output channel, undo routing 381

 TIMER0->ROUTE = 0; 382

 383

 // Disable the timer 384

 TIMER_Enable(TIMER0, false); 385

 386

 // Clear the numbers display 387

166 of 304 Liam McSherry
 EC1520839

 SegmentLCD_NumberOff(); 388

 // Display a row of dashes to make clear menu changes 389

 SegmentLCD_Write("-------"); 390

 391

#ifdef Config_FanEmu_PrsIncludes 392

 // Disable the PRS input to the pulse counter. 393

 PCNT_PRSInputEnable(PCNT0, pcntPRSInputS0, false); 394

#endif 395

 } 396

 397

 398

 // Increment ticks counter if we're remaining in this state 399

 if (state == stateModePwmDac) 400

 ticks++; 401

 402

 return state; 403

} 404

 405

// Function executed in the supply modulation control mode state. 406

// This function is largely the same as that for the PWM DAC. 407

// Refer to that function for more extensive comments. 408

enum State StateHandler_ModeSupplyModulate(const uint32_t GPIO_IF) 409

{ 410

 static bool firstRun = true; 411

 // Represents the duty cycle variants required by the program 412

 // spec. 413

 static enum { 414

 duty100, duty80, duty60, duty40, duty15 415

 } modeVariant; 416

 // Number of 10ms ticks since entering this state. 417

 static uint32_t ticks = 0; 418

 419

 420

 // The state reported on return. 421

 enum State state = stateModeSupplyModulate; 422

 423

 // If this is the first run, configure the appropriate 424

 // peripherals. 425

 if (firstRun) { 426

 firstRun = false; 427

 428

#ifdef Config_FanEmu_PrsIncludes 429

 // Enable input to the pulse counter via the PRS. This 430

 // allows us to use the output of a timer to emulate a fan 431

 // tachometer at 4000rpm. 432

 PCNT_PRSInputEnable(PCNT2, pcntPRSInputS0, true); 433

 TIMER_TopSet(TIMER3, Config_FanEmu_4000rpm); 434

#endif 435

 436

 // TIMER1 CC1 Location 4 (PD7) 437

 TIMER1->ROUTE = TIMER_ROUTE_LOCATION_LOC4 | 438

Liam McSherry 167 of 304
EC1520839

 TIMER_ROUTE_CC1PEN; 439

 440

 // Configure timer for 100% duty cycle operation at 441

 // 100kHz. 442

 _util_TIMER_PrescalerSet(TIMER1, 1); 443

 444

 TIMER_CompareSet(TIMER1, 1, Config_PWM_TimerCompareValue + 1); 445

 446

 // Set the duty mode variable to reflect this 447

 modeVariant = duty100; 448

 449

 // Start the timer and PWM generation 450

 TIMER_Enable(TIMER1, true); 451

 } 452

 453

 // Display instructions 454

 _util_ScrollText(" PB0 BACK - PB1 DUTY", ticks / 35); 455

 456

 if (ticks % 100 == 0) { 457

 // We use PCNT0 and, as measurements are per-second, 60 458

 // samples/min. 459

 _util_DisplayRPM(PCNT2, 60); 460

 } 461

 462

 // If PB1 is pressed, move to the next duty cycle mode. 463

 if (GPIO_IF & PUSHBUTTON_1) { 464

 uint8_t duty = 0; 465

 466

 switch (modeVariant) { 467

 // Duty cycle 100% -> 80% 468

 case duty100: { 469

 modeVariant = duty80; 470

 duty = 112; 471

 472

#ifdef Config_FanEmu_PrsIncludes 473

 TIMER_TopSet(TIMER3, Config_FanEmu_2400rpm); 474

#endif 475

 } break; 476

 477

 // Duty cycle 80% -> 60% 478

 case duty80: { 479

 modeVariant = duty60; 480

 duty = 84; 481

 } break; 482

 483

 // Duty cycle 60% -> 40% 484

 case duty60: { 485

 modeVariant = duty40; 486

 duty = 56; 487

 488

#ifdef Config_FanEmu_PrsIncludes 489

168 of 304 Liam McSherry
 EC1520839

 TIMER_TopSet(TIMER3, Config_FanEmu_4000rpm); 490

#endif 491

 } break; 492

 493

 // Duty cycle 40% -> 15% 494

 case duty40: { 495

 modeVariant = duty15; 496

 duty = 21; 497

 } break; 498

 499

 // Duty cycle 15% -> 100% 500

 case duty15: { 501

 modeVariant = duty100; 502

 duty = Config_PWM_TimerCompareValue + 1; 503

 } break; 504

 505

 } 506

 507

 TIMER_CompareSet(TIMER1, 1, duty); 508

 } 509

 // If PB0 is pressed, transition back to the control mode 510

 // menu. 511

 else if (GPIO_IF & PUSHBUTTON_0) { 512

 state = stateMenu; 513

 514

 ticks = 0; 515

 firstRun = true; 516

 517

 TIMER1->ROUTE = 0; 518

 519

 SegmentLCD_NumberOff(); 520

 SegmentLCD_Write("-------"); 521

 522

 523

#ifdef Config_FanEmu_PrsIncludes 524

 PCNT_PRSInputEnable(PCNT2, pcntPRSInputS0, false); 525

#endif 526

 } 527

 528

 // Increment tick counter if we're remaining in this state. 529

 if (state == stateModeSupplyModulate) 530

 ticks++; 531

 532

 return state; 533

} 534

 535

// Function executed in the standard fan PWM signal control mode 536

// state. This function shares a lot of similarities with the 537

// equivalent for the control of the PWM DAC. Refer to that 538

// function for more extensive comments. 539

enum State StateHandler_ModeFanPwmControl(const uint32_t GPIO_IF) 540

Liam McSherry 169 of 304
EC1520839

{ 541

 static bool firstRun = true; 542

 static enum { duty100, duty70, duty30, duty20 } modeVariant; 543

 static uint32_t ticks = 0; 544

 545

 546

 enum State state = stateModeFanPwmControl; 547

 548

 if (firstRun) { 549

 firstRun = false; 550

 551

#ifdef Config_FanEmu_PrsIncludes 552

 PCNT_PRSInputEnable(PCNT2, pcntPRSInputS0, true); 553

 TIMER_TopSet(TIMER3, Config_FanEmu_600rpm); 554

#endif 555

 556

 // Using fan PWM control is slightly different, as we need 557

 // to use both the supply-modulating MOSFET and the 558

 // control signal MOSFET. As the supply MOSFET only 559

 // controls the connection to ground, we can just 560

 // provide a constant output on a GPIO to control it. 561

 // 562

 // PWM control is on LETIMER0 OUT1 Location 1 (PB11). 563

 // Supply modulation signal is on PD7. 564

 565

 // The LETIMER is preconfigured for 25kHz and isn't used 566

 // for any other function, so we only need to reset the 567

 // duty cycle. 568

 LETIMER_CompareSet(LETIMER0, 1, Config_PWM_LETimerCompareValue); 569

 570

 // Set the mode variable accordingly 571

 modeVariant = duty100; 572

 573

 // Route to location 1 and connect output 1 574

 LETIMER0->ROUTE = LETIMER_ROUTE_LOCATION_LOC1 | 575

 LETIMER_ROUTE_OUT1PEN; 576

 577

 // GPIO is already configured, so we just need to set it 578

 // high. 579

 GPIO_PinOutSet(gpioPortD, 7); 580

 581

 // Start the timer and enable PWM generation 582

 LETIMER_Enable(LETIMER0, true); 583

 } 584

 585

 // Instructions 586

 _util_ScrollText(" PB0 BACK - PB1 DUTY", ticks / 35); 587

 588

 // RPM display 589

 if (ticks % 100 == 0) { 590

 // We use PCNT0 and, as measurements are per-second, 60 591

170 of 304 Liam McSherry
 EC1520839

 // samples/min. 592

 _util_DisplayRPM(PCNT2, 60); 593

 } 594

 595

 // If PB1 is pressed, move to the next duty cycle mode. 596

 if (GPIO_IF & PUSHBUTTON_1) { 597

 uint8_t duty = 0; 598

 599

 switch (modeVariant) { 600

 // Duty cycle 100% -> 70% 601

 case duty100: { 602

 modeVariant = duty70; 603

 duty = 98; // 98/140 == 70% 604

 605

#ifdef Config_FanEmu_PrsIncludes 606

 TIMER_TopSet(TIMER3, Config_FanEmu_420rpm); 607

#endif 608

 } break; 609

 610

 // Duty cycle 70% -> 30% 611

 case duty70: { 612

 modeVariant = duty30; 613

 duty = 42; // 42/140 == 30% 614

 615

 // PRS emulation in this additional duty cycle 616

 // mode isn't possible, as it would require 617

 // changing more than just the emulation timer's 618

 // TOP value to achieve low enough frequency. 619

 } break; 620

 621

 // Duty cycle 30% -> 20% 622

 case duty30: { 623

 modeVariant = duty20; 624

 duty = 28; // 28/140 == 20% 625

 626

 // PRS emulation in this additional duty cycle 627

 // mode isn't possible, as it would require 628

 // changing more than just the emulation timer's 629

 // TOP value to achieve low enough frequency. 630

 } break; 631

 632

 // Duty cycle 20% -> 100% 633

 case duty20: { 634

 modeVariant = duty100; 635

 duty = Config_PWM_LETimerCompareValue; 636

 637

#ifdef Config_FanEmu_PrsIncludes 638

 TIMER_TopSet(TIMER3, Config_FanEmu_600rpm); 639

#endif 640

 } break; 641

 } 642

Liam McSherry 171 of 304
EC1520839

 643

 LETIMER_CompareSet(LETIMER0, 1, duty); 644

 } 645

 // If PB0 is pressed, transition back to the control mode 646

 // menu. 647

 else if (GPIO_IF & PUSHBUTTON_0) { 648

 state = stateMenu; 649

 650

 ticks = 0; 651

 firstRun = true; 652

 653

 LETIMER0->ROUTE = 0; 654

 655

 SegmentLCD_NumberOff(); 656

 SegmentLCD_Write("-------"); 657

 658

 // Disable the supply modulation MOSFET gate signal GPIO 659

 GPIO_PinOutClear(gpioPortD, 7); 660

 661

#ifdef Config_FanEmu_PrsIncludes 662

 PCNT_PRSInputEnable(PCNT2, pcntPRSInputS0, false); 663

#endif 664

 } 665

 666

 if (state == stateModeFanPwmControl) 667

 ticks++; 668

 669

 return state; 670

} 671

 672

// Utility function for scrolling text. See declaration for more 673

// info. 674

void _util_ScrollText(const char* text, uint32_t offset) { 675

 // The length of the string 676

 const size_t len = strlen(text); 677

 678

 SegmentLCD_Write(text + (offset % len)); 679

} 680

 681

// Utility function for displaying PCNT counter on the numeric 682

// LCD. See the declaration for parameter info. 683

void _util_DisplayRPM(PCNT_TypeDef* pcnt, const uint8_t samplesPerMin) { 684

 // The cast to int shouldn't affect the result, as the pulse 685

 // counter is only able to count up to 255 and storing 255 in 686

 // an [int16_t] won't get close to altering the sign bit. 687

 SegmentLCD_Number(688

 (int16_t)PCNT_CounterGet(pcnt) * (samplesPerMin / 2) 689

); 690

 691

 PCNT_CounterReset(pcnt); 692

} 693

172 of 304 Liam McSherry
 EC1520839

 694

// Helper function for adjusting the prescaler for a TIMER. 695

// 696

// Parameters: 697

// timer = The timer the prescaler of which to set. 698

// divisor = The amount by which the timer clock is to be 699

// divided. Valid values are powers of 2 from 1 to 700

// 1024 (i.e. 2**0 to 2**10). 701

// 702

// Returns: 703

// False if the divisor is greater than 1024. 704

// True if the setting is applied. 705

// 706

// Remarks: 707

// If the provided divisor is not a power of two, the value 708

// represented by the most significant set bit will be taken as 709

// the specified value. 710

// 711

// Declared in states.h. 712

bool _util_TIMER_PrescalerSet(TIMER_TypeDef* timer, 713

 const uint8_t divisor) { 714

 // Indicate failure if the divisor is greater than 1024. 715

 if (divisor > 1024) { 716

 return false; 717

 } 718

 719

 // The prescaler bits are stored in TIMERx_CTRL[27:24], 720

 // requiring the bits be shifted up 24 positions. 721

 const uint32_t prescVal = CMU_DivToLog2(divisor) << 24; 722

 723

 // Clear the prescaler value from the register and set the new 724

 // value. 725

 timer->CTRL = (timer->CTRL & 0xF0FFFFFFU) | prescVal; 726

 727

 return true; 728

} 729

Liam McSherry 173 of 304
EC1520839

C3 USB Prototype — Firmware

The following is the source code for the USB prototype firmware, written in C. The
firmware emulates a fan controller which implements the Appendix D protocol
and which controls a single fan. Discussion on the firmware is in Appendix G1.3.

As noted in that discussion, certain corrections were made to code provided by
the vendor. The corrected code is not included here, but the changes made are
described in that discussion.

main.c
The firmware entry point and general microcontroller configuration.

/* Author: Liam McSherry 1

 * Date: 22nd February 2018 2

 * Notes: Entry point and configuration, etc. 3

*/ 4

 5

// Standard C headers 6

#include <stdbool.h> 7

#include <stdint.h> 8

// Device-specific headers for the EFM32WG990. 9

#include "em_device.h" 10

#include "em_chip.h" 11

#include "em_cmu.h" 12

#include "em_gpio.h" 13

#include "em_timer.h" 14

#include "segmentlcd.h" 15

// Corrected/etc USB middleware headers 16

#include "emusb-modheaders/em_usb.h" 17

// Headers from the development kit board support package. 18

#include "bsp.h" 19

// Firmware-specific headers 20

#include "callbacks.h" 21

 22

// Local function prototypes 23

void configure_Clocks(void); 24

void configure_USB(void); 25

 26

int main(void) 27

{ 28

 // Initialisation, erratum fixes, calibration, etc. 29

 CHIP_Init(); 30

 31

 configure_Clocks(); 32

 configure_USB(); 33

 34

 /* Infinite loop */ 35

 while (1); 36

} 37

174 of 304 Liam McSherry
 EC1520839

// Configures clocks for the chip. 38

void configure_Clocks(void) { 39

 40

 // The USB controller requires HFCORE to operate at 48MHz. 41

 // The development kit provides a 48MHz crystal, so we drive 42

 // HFCORE from that crystal. 43

 // 44

 // Enable access to LE peripherals when >24MHz. Other 45

 // settings, such as the buffer current setting and mode 46

 // setting, are already handled by the default register 47

 // values. 48

 CMU->CTRL |= CMU_CTRL_HFLE; 49

 // Set HFCORE divider for operation above 24MHz. 50

 CMU->HFCORECLKDIV |= CMU_HFCORECLKDIV_HFCORECLKLEDIV_DIV4; 51

 // Enable HFXO 52

 CMU_OscillatorEnable(cmuOsc_HFXO, true, true); 53

 54

 // Spinwait until HFXO is ready 55

 while (!(CMU->STATUS & CMU_STATUS_HFXORDY)) ; 56

 57

 // Set HFXO as the HFCORE driver and HFCLK as the 58

 // HFCORECLK(USBC) source. 59

 CMU->CMD = CMU_CMD_HFCLKSEL_HFXO | 60

 CMU_CMD_USBCCLKSEL_HFCLKNODIV; 61

 62

 63

 // Configure HFPER to operate at 48MHz/16 == 3MHz and 64

 // enable. 65

 CMU_ClockDivSet(cmuClock_HFPER, cmuClkDiv_16); 66

 CMU_ClockEnable(cmuClock_HFPER, true); 67

 68

 // Enable clock for timer 0. 69

 CMU_ClockEnable(cmuClock_TIMER0, true); 70

 71

 // Enable clock for GPIO. 72

 CMU_ClockEnable(cmuClock_GPIO, true); 73

} 74

 75

// Configure the USB controller 76

void configure_USB(void) { 77

 78

 // The initialisation function for the USB controller uses a 79

 // number of pointers to structs. These must therefore be 80

 // static variables. 81

 // 82

 // Documentation for functions in [em_usbd.c] commonly states 83

 // that variables/buffers must be 4-byte aligned, so we're 84

 // going to align everything here to be safe. 85

 86

 static const USB_DeviceDescriptor_TypeDef 87

 usb_device __attribute__ ((aligned(4))) = { 88

Liam McSherry 175 of 304
EC1520839

 // This is a device descriptor, so the length is 89

 // constant and provided by the driver. 90

 .bLength = USB_DEVICE_DESCSIZE, 91

 .bDescriptorType = USB_DEVICE_DESCRIPTOR, 92

 // We're supporting USB 2.1 so we can use Binary 93

 // Device Object Store (BOS) descriptors, which are 94

 // required to autoload WinUSB. 95

 .bcdUSB = 0x0210, 96

 // Device class information is defined on a per- 97

 // -interface basis, and not at device level. 98

 .bDeviceClass = 0x00, 99

 .bDeviceSubClass = 0x00, 100

 .bDeviceProtocol = 0x00, 101

 // We're going to accept packets of 64 bytes on 102

 // the control endpoint 0. 103

 .bMaxPacketSize0 = 64, 104

 // VID and PID for the device 105

 .idVendor = USB_VID, 106

 .idProduct = USB_PID, 107

 // Version number for the device, doesn't need to 108

 // be meaningful so we'll state v0.1. 109

 .bcdDevice = 0x0001, 110

 // Indices of string descriptors for strings that 111

 // contain the manufacturer and product names and 112

 // the serial number. 113

 .iManufacturer = 1, 114

 .iProduct = 2, 115

 .iSerialNumber = 3, 116

 // The number of configurations for the device 117

 .bNumConfigurations = 1 118

 }; 119

 120

 // Language ID string descriptor 121

 static const struct __attribute__ ((aligned(4))) { 122

 uint8_t bLength; 123

 uint8_t bDescriptorType; 124

 uint8_t wLangID[2]; 125

 } iLangID = { 126

 4, 127

 USB_STRING_DESCRIPTOR, 128

 // English (United Kingdom) language ID. 129

 // Actual value is 0x0809, but multibyte fields must be 130

 // stored in little-endian order per USB section 8.1. 131

 { 0x09, 0x08 } 132

 }; 133

 134

 // iManufacturer string descriptor 135

 static const struct __attribute__ ((aligned(4))) { 136

 uint8_t bLength; 137

 uint8_t bDescriptorType; 138

 char16_t bString[13]; 139

176 of 304 Liam McSherry
 EC1520839

 } iManufacturer = { 140

 28, 141

 USB_STRING_DESCRIPTOR, 142

 { 143

 'L', 'i', 'a', 'm', ' ', 144

 'M', 'c', 'S', 'h', 'e', 'r', 'r', 'y' 145

 } 146

 }; 147

 148

 // iProduct string descriptor 149

 static const struct __attribute__ ((aligned(4))) { 150

 uint8_t bLength; 151

 uint8_t bDescriptorType; 152

 char16_t bString[23]; 153

 } iProduct = { 154

 48, 155

 USB_STRING_DESCRIPTOR, 156

 { 157

 'G', 'U', '2', ' ', 'U', 'S', 'B', ' ', 158

 'F', 'i', 'r', 'm', 'w', 'a', 'r', 'e', ' ', 159

 'D', 'e', 'v', 'i', 'c', 'e' 160

 } 161

 }; 162

 163

 // iSerialNumber string descriptor 164

 static const struct __attribute__ ((aligned(4))) { 165

 uint8_t bLength; 166

 uint8_t bDescriptor; 167

 char16_t bString[1]; 168

 } iSerialNumber = { 169

 4, 170

 USB_STRING_DESCRIPTOR, 171

 { 'A' } 172

 }; 173

 174

 // Identifier string descriptor for the fan we're pretending 175

 // is connected to the controller 176

 static const struct __attribute__ ((aligned(4))) { 177

 uint8_t bLength; 178

 uint8_t bDescriptor; 179

 char16_t bString[13]; 180

 } iFanCtrlIdentifier = { 181

 28, 182

 USB_STRING_DESCRIPTOR, 183

 { 184

 'F', 'a', 'n', ' ', '#', '1', ' ', 185

 '(', 'E', 'm', 'u', '.', ')' 186

 } 187

 }; 188

 189

Liam McSherry 177 of 304
EC1520839

 // Array of string descriptors 190

 static const void* const usb_strings[5] = { 191

 &iLangID, // 0 192

 &iManufacturer, // 1 193

 &iProduct, // 2 194

 &iSerialNumber, // 3 195

 &iFanCtrlIdentifier // 4 196

 }; 197

 198

 static const uint8_t usb_config[] 199

 __attribute__ ((aligned(4))) = { 200

 /***** Standard Configuration Descriptor *****/ 201

 /* bLength */ USB_CONFIG_DESCSIZE, 202

 /* bDescriptorType */ USB_CONFIG_DESCRIPTOR, 203

 // The length in bytes of all descriptors returned 204

 // with the standard configuration descriptor. 205

 /* wTotalLength */ 26, 0, 206

 /* bNumInterfaces */ 1, 207

 /* bConfigurationValue */ 1, 208

 // Index of a string descriptor describing this 209

 // configuration, 0 means no descriptor. 210

 /* iConfiguration */ 0, 211

 /* bmAttributes */ CONFIG_DESC_BM_RESERVED_D7 | 212

 CONFIG_DESC_BM_SELFPOWERED, 213

 /* bmMaxPower */ CONFIG_DESC_MAXPOWER_mA(100), 214

 215

 /***** Standard Interface Descriptor *****/ 216

 /* bLength */ USB_INTERFACE_DESCSIZE, 217

 /* bDescriptorType */ USB_INTERFACE_DESCRIPTOR, 218

 /* bInterfaceNumber */ 0, 219

 /* bAlternateSetting */ 0, 220

 /* bNumEndpoints */ NUM_EP_USED, 221

 // The interface uses a vendor-defined device class 222

 /* bInterfaceClass */ 0xFF, 223

 // The subclass and protocol don't need to have any 224

 // meaning since this isn't a "real" device. 225

 /* bInterfaceSubclass */ 0x00, 226

 /* bInterfaceProtocol */ 0x00, 227

 /* iInterface */ 0, 228

 229

 /***** Standard Endpoint Descriptor *****/ 230

 // We're only using endpoint zero, so no endpoint 231

 // descriptor is to be provided (per USB s. 9.6.6). 232

 233

 /**********/ 234

 // Microsoft-specific descriptors are retrieved by 235

 // using a Microsoft-defined request, and so are not 236

 // included with these descriptors. 237

 238

 /***** Appendix D Protocol Descriptor *****/ 239

 // This is the fan controller configuration descriptor 240

178 of 304 Liam McSherry
 EC1520839

 // defined by Appendix D. 241

 /* bLength */ 8, 242

 /* bDescriptorType */ 0x20, 243

 /* bmAttributes */ 0x00, // 1x fan support 244

 /* bcdVersion */ 0x11, 0x00, // v0.11 protocol 245

 /* Reserved */ 0, 0, 0, 246

 }; 247

 248

 // We don't want to care here about the specifics of the 249

 // callbacks, we just want something we can initialise the 250

 // middleware with. Note, this is already a pointer, so we 251

 // don't need to take its address in the struct assignment. 252

 const USBD_Callbacks_TypeDef* usb_cbacks = getUsbCallbacks(); 253

 254

 static const uint8_t bufferingMultiplier = 3; 255

 256

 const USBD_Init_TypeDef usbd_init = { 257

 .deviceDescriptor = &usb_device, 258

 .configDescriptor = usb_config, 259

 .stringDescriptors = usb_strings, 260

 .numberOfStrings = 4, 261

 .callbacks = usb_cbacks, 262

 .bufferingMultiplier = &bufferingMultiplier, 263

 .reserved = 0 264

 }; 265

 266

 267

 USBD_Init(&usbd_init); 268

 269

 USBD_Connect(); 270

}271

callbacks.c
The code containing the callbacks used by the vendor-provided USB device stack
which handle USB-related events (such as receiving a request).

/* Author: Liam McSherry 1

 * Date: 3rd March 2018 2

 * Notes: Provides the callbacks used by the USB driver and 3

 * related logic for the firmware. 4

*/ 5

 6

 7

// Standard C headers 8

#include <stdlib.h> 9

#include <stdbool.h> 10

// Corrected/etc USB middleware headers 11

#include "emusb-modheaders/em_usb.h" 12

// Firmware-specific headers 13

#include "callbacks.h" 14

 15

Liam McSherry 179 of 304
EC1520839

// Local prototypes 16

int MiddlewareCallback_SetupCmd(const USB_Setup_TypeDef* setup); 17

int ReqHandler_GetDescriptor_BOS(const USB_Setup_TypeDef* setup); 18

int ReqHandler_MsDescriptorSet(const USB_Setup_TypeDef* setup); 19

int ReqHandler_GetFanID(const USB_Setup_TypeDef* setup); 20

int ReqHandler_SetFanMode(const USB_Setup_TypeDef* setup); 21

int ReqHandler_SetFanMode_ProcessData(22

 USB_Status_TypeDef, uint32_t, uint32_t); 23

int ReqHandler_GetFanMode(const USB_Setup_TypeDef* setup); 24

 25

 26

// Returns a pointer to the callbacks struct. 27

const USBD_Callbacks_TypeDef* getUsbCallbacks(void) { 28

 // Used by the USB driver to call back to application code 29

 // to enable that code to handle USB events. 30

 static const USBD_Callbacks_TypeDef 31

 usb_callbacks __attribute__ ((aligned(4))) = { 32

 // Callback for handling a reset by the host. 33

 .usbReset = NULL, 34

 // Callback for handling a change in device state. 35

 .usbStateChange = NULL, 36

 // Callback for handling a SETUP packet from the USB 37

 // host, can be used to override handling for standard 38

 // requests as well as class-/vendor-defined requests. 39

 .setupCmd = &MiddlewareCallback_SetupCmd, 40

 // Callback to enable the driver to determine whether 41

 // the device is self-powered at any given time. 42

 .isSelfPowered = NULL, 43

 // Callback for the detection of a Start-of-Frame 44

 // packet, which are regularly issued at 1000Hz (full 45

 // speed) or 8kHz (high speed) (per USB s. 8.4.3). 46

 .sofInt = NULL 47

 }; 48

 49

 return &usb_callbacks; 50

} 51

 52

 53

// Callback for handling SETUP packets. 54

// 55

// Parameters: 56

// setup = The contents of the SETUP packet, from the driver. 57

// See USB section 9.3 (table 9-2). 58

// 59

// Returns: 60

// A status code that is a [USB_Status_TypeDef] request status 61

// code value. 62

int MiddlewareCallback_SetupCmd(const USB_Setup_TypeDef* setup) { 63

 // If we don't handle a request, we can indicate that we 64

 // didn't and the middleware will attempt to handle it for us. 65

 int status = USB_STATUS_REQ_UNHANDLED; 66

180 of 304 Liam McSherry
 EC1520839

 67

 // To indicate we want WinUSB loaded on the host, we need to 68

 // respond to a request for the USB BOS descriptor and include 69

 // with that descriptor the platform-specific descriptors used 70

 // by the Microsoft OS Descriptors 2.0 specification. 71

 if (setup->Type == USB_SETUP_TYPE_STANDARD) { 72

 73

 // Handle GET_DESCRIPTOR requests for the BOS descriptor 74

 if (setup->bRequest == GET_DESCRIPTOR && 75

 setup->wValue == (USB_BOS_DESCRIPTOR << 8)) { 76

 status = ReqHandler_GetDescriptor_BOS(setup); 77

 } 78

 79

 } 80

 // The operating system will send a vendor-specific request, 81

 // using the values we reported in the BOS, to retrieve the 82

 // operating system-specific descriptors. 83

 else if (setup->Type == USB_SETUP_TYPE_VENDOR) { 84

 switch (setup->bRequest) { 85

 86

 // A request of type [bMS_VendorCode] is used by the 87

 // host to retrieve MS OS 2.0 feature descriptors. 88

 case bMS_VendorCode: { 89

 status = ReqHandler_MsDescriptorSet(setup); 90

 } break; 91

 92

 } 93

 } 94

 // The requests defined in the fan controller device class 95

 // specification are class-specific. 96

 else if (setup->Type == USB_SETUP_TYPE_CLASS) { 97

 switch (setup->bRequest) { 98

 99

 case FANCTRL_FANID_REQ: { 100

 status = ReqHandler_GetFanID(setup); 101

 } break; 102

 103

 case FANCTRL_MDSET_REQ: { 104

 status = ReqHandler_SetFanMode(setup); 105

 } break; 106

 107

 case FANCTRL_MDGET_REQ: { 108

 status = ReqHandler_GetFanMode(setup); 109

 } break; 110

 111

 } 112

 } 113

 114

 return status; 115

} 116

 117

Liam McSherry 181 of 304
EC1520839

// Implements USB BOS descriptor handling 118

int ReqHandler_GetDescriptor_BOS(const USB_Setup_TypeDef* setup) { 119

 // All Binary Device Object Store (BOS) descriptors. These 120

 // are used to indicate that we support MS OS Descriptors 2.0 121

 // and so to tell the host that it can query those. 122

 static const uint8_t 123

 bosDescriptors[50] __attribute__ ((aligned(4))) = { 124

 125

 /***** BOS Descriptor *****/ 126

 /* bLength */ USB_BOS_DESCSIZE, 127

 /* bDescriptorType */ USB_BOS_DESCRIPTOR, 128

 /* wTotalLength */ 50, 0x00, 129

 /* bDeviceNumCaps */ 3, 130

 131

 /***** USB 2.0 Extension Descriptor *****/ 132

 // See USB 3.1 section 9.6.2.1 133

 /* bLength */ 7, 134

 /* bDescriptorType */ USB_BOS_DEVCAP_DESC, 135

 /* bDevCapabilityType */ BOS_USB2_EXTENSION, 136

 /* bmAttributes */ 0, 0, 0, 0, 137

 138

 /***** SuperSpeed USB Descriptor *****/ 139

 // See USB 3.1 section 9.6.2.2 140

 /* bLength */ 10, 141

 /* bDescriptorType */ USB_BOS_DEVCAP_DESC, 142

 /* bDevCapabilityType */ BOS_SUPERSPEED_USB, 143

 /* bmAttributes */ 0, 144

 /* wSpeedsSupported */ 0x03, 0x00, 145

 /* bFunctionalitySupport */ 0x00, // Fine at low speed 146

 // These values are for Link Power Management, which we 147

 // don't appear to need to support, so we zero them. 148

 /* bU1DevExitLat */ 0, 149

 /* wU2DevExitLat */ 0, 0, 150

 151

 /***** Device Capability Descriptor 1 *****/ 152

 // These fields are from the USB standard 153

 // Indicates Microsoft OS 2.0 Descriptor support 154

 /* bLength */ 28, 155

 /* bDescriptorType */ USB_BOS_DEVCAP_DESC, 156

 /* bDevCapabilityType */ BOS_CAP_PLATFORM, 157

 // The following fields are from the Microsoft standard 158

 /* bReserved */ 0, 159

 // UUID {D8DD60DF-4589-4CC7-9CD2-659D9E648A9F} indicates 160

 // that Microsoft OS 2.0 Descriptors is supported. As 161

 // above, multibyte fields are stored little-endian 162

 /* PlatformCapabilityUUID */ 0xDF, 0x60, 0xDD, 0xD8, 163

 0x89, 0x45, 0xC7, 0x4C, 164

 0x9C, 0xD2, 0x65, 0x9D, 165

 0x9E, 0x64, 0x8A, 0x9F, 166

 // The descriptor set information structure contained in 167

 // this section indicates to which version of Windows the 168

182 of 304 Liam McSherry
 EC1520839

 // descriptor set applies, provides the total set length, 169

 // the [bMS_VendorCode] value used to retrieve feature 170

 // descriptors, and other data. 171

 /* CapabilityData */ 172

 // Windows version is Windows Blue or later 173

 /* dwWindowsVersion */ NTDDI_WINBLUE_LE, 174

 /* DescriptorSetTotalLength */ 0x0A+132+0x14, 0, 175

 /* bMS_VendorCode */ bMS_VendorCode, 176

 /* bAltEnumCode */ 0 177

 178

 }; 179

 180

 // Ensure we don't transfer more data than we're meant to by 181

 // clipping the value of [wLength] if it's too great 182

 int byteCount = setup->wLength > sizeof(bosDescriptors) 183

 ? sizeof(bosDescriptors) 184

 : setup->wLength; 185

 186

 // Transfer the BOS descriptors 187

 return USBD_Write(0, &bosDescriptors, byteCount, NULL); 188

} 189

 190

// Handles requests for the Microsoft OS 2.0 descriptor set 191

int ReqHandler_MsDescriptorSet(const USB_Setup_TypeDef* setup) { 192

 static const uint8_t msosDescSet[0x0A+132+0x14] 193

 __attribute__ ((aligned(4))) = { 194

 195

 /***** Descriptor Set Header *****/ 196

 /* wLength */ MS_SETHEADER_DESCSZ, 197

 /* wDescriptorType */ MS_SETHEADER_DESC, 198

 /* dwWindowsVersion */ NTDDI_WINBLUE_LE, 199

 /* wTotalLength */ 0x0A+132+0x14, 0, 200

 201

 202

 /***** Registry Property Descriptor *****/ 203

 // This descriptor is used to set a device interface GUID 204

 // in the registry, so we can access the device. 205

 /* wLength */ 132, 0, 206

 /* wDescriptorType */ MS_REGISTRY_DESC, 207

 /* wPropertyDataType */ REGISTRY_REG_ML_SZ, 208

 /* wPropertyNameLength */ 42, 0, 209

 // UTF-16-encoded "DeviceInterfaceGUIDs" (+NUL-term.) 210

 /* wPropertyName */ 0x44, 0x00, 0x65, 0x00, 211

 0x76, 0x00, 0x69, 0x00, 212

 0x63, 0x00, 0x65, 0x00, 213

 0x49, 0x00, 0x6E, 0x00, 214

 0x74, 0x00, 0x65, 0x00, 215

 0x72, 0x00, 0x66, 0x00, 216

 0x61, 0x00, 0x63, 0x00, 217

 0x65, 0x00, 0x47, 0x00, 218

 0x55, 0x00, 0x49, 0x00, 219

Liam McSherry 183 of 304
EC1520839

 0x44, 0x00, 0x73, 0x00, 220

 0x00, 0x00, 221

 /* wPropertyDataLength */ 80, 0, 222

 // The GUID 0A56B842-14F1-11E8-BA16-00805FC181FE encoded 223

 // as UTF-16, with enclosing braces {}. 224

 /* PropertyData */ 0x7B, 0x00, 0x30, 0x00, 225

 0x41, 0x00, 0x35, 0x00, 226

 0x36, 0x00, 0x42, 0x00, 227

 0x38, 0x00, 0x34, 0x00, 228

 0x32, 0x00, 0x2D, 0x00, 229

 0x31, 0x00, 0x34, 0x00, 230

 0x46, 0x00, 0x31, 0x00, 231

 0x2D, 0x00, 0x31, 0x00, 232

 0x31, 0x00, 0x45, 0x00, 233

 0x38, 0x00, 0x2D, 0x00, 234

 0x42, 0x00, 0x41, 0x00, 235

 0x31, 0x00, 0x36, 0x00, 236

 0x2D, 0x00, 0x30, 0x00, 237

 0x30, 0x00, 0x38, 0x00, 238

 0x30, 0x00, 0x35, 0x00, 239

 0x46, 0x00, 0x43, 0x00, 240

 0x31, 0x00, 0x38, 0x00, 241

 0x31, 0x00, 0x46, 0x00, 242

 0x45, 0x00, 0x7D, 0x00, 243

 0x00, 0x00, 0x00, 0x00, 244

 245

 /***** Compatible ID Header *****/ 246

 // This descriptor is used to indicate that we want the 247

 // operating system to load WinUSB for us. 248

 /* wLength */ MS_COMPATID_DESCSZ, 249

 /* wDescriptorType */ MS_COMPATID_DESC, 250

 // The text "WINUSB" in ASCII 251

 /* CompatibleID */ 0x57, 0x49, 0x4E, 0x55, 252

 0x53, 0x42, 253

 // No value 254

 /* SubcompatibleID */ 0x00, 0x00, 0x00, 0x00, 255

 0x00, 0x00, 0x00, 0x00, 256

 }; 257

 258

 if (setup->wIndex == 0x07) { 259

 int byteCount = setup->wLength > sizeof(msosDescSet) 260

 ? sizeof(msosDescSet) 261

 : setup->wLength; 262

 263

 return USBD_Write(0, &msosDescSet, byteCount, NULL); 264

 } 265

 266

 return USB_STATUS_REQ_UNHANDLED; 267

} 268

 269

 270

184 of 304 Liam McSherry
 EC1520839

// Buffer for storing received mode data from the host. 271

static uint8_t modeBuf[32] __attribute__ ((aligned(4))); 272

// The length of [modeBuf]. Zero if we haven't been configured. 273

static size_t modeBufSize = 0; 274

 275

// Handles requests for fan identification/status information, 276

// and responds with dummy values. 277

int ReqHandler_GetFanID(const USB_Setup_TypeDef* setup) { 278

 static uint8_t fanId[8] __attribute__ ((aligned(4))) = { 279

 /* bmAttributes */ 0xD3, 0x07, 0x7D, // Voltage Control 280

 // Speed Control 281

 // Start @ 7.5V 282

 // 30% min speed 283

 // 4000rpm max 284

 /* wCurrent */ 0x8C, 0x00, // 140mA 285

 /* iIdentifier */ 4, 286

 /* Reserved */ 0, 287

 }; 288

 289

 // Pointer to wCurrent so we can more easily fiddle with it 290

 // between requests. 291

 static uint16_t * const wCurrent = (uint16_t*)(fanId + 3); 292

 // Counter so we can use a repeating pattern with requests. 293

 static uint16_t counter = 0; 294

 295

 // If the request is for a fan other than the one fan that 296

 // we support, return a request error. 297

 if (setup->wValue != 0) 298

 return USB_STATUS_REQ_ERR; 299

 300

 // If we haven't received a SET_FAN_MODE request, rotate 301

 // through four constant predefined currents. 302

 if (modeBufSize == 0) switch (counter++ % 4) { 303

 case 0: *wCurrent = 0x008D; break; // 141mA 304

 case 1: *wCurrent = 0x008E; break; // 142mA 305

 case 2: *wCurrent = 0x008B; break; // 139mA 306

 case 3: *wCurrent = 0x008C; break; // 140mA 307

 } 308

 // If we've previously received a SET_FAN_MODE request, then 309

 // report the configured temperatures as our currents. 310

 else { 311

 // We need to keep track of our index across requests. 312

 static uint8_t callNo = 0; 313

 314

 // If we've reached the end of the array, reset the index. 315

 if (callNo >= (modeBufSize / 2)) 316

 callNo = 0; 317

 318

 // Each entry is two bytes, so to iterate through every 319

 // second byte starting at zero (as the first byte of a 320

 // two-byte entry contains the temperature) we need to 321

Liam McSherry 185 of 304
EC1520839

 // multiply the index by two. 322

 // 323

 // The first bit of an entry is a last-in-sequence 324

 // indicator, so we need to shift that away. 325

 *wCurrent = modeBuf[callNo++ * 2] >> 1; 326

 } 327

 328

 // Return the buffer 329

 return USBD_Write(0, &fanId, 8, NULL); 330

} 331

 332

// Handles requests to set fan configuration mode. 333

int ReqHandler_SetFanMode(const USB_Setup_TypeDef* setup) { 334

 // The format of the contents of [wValue]. 335

 struct wValue_TypeDef { 336

 uint8_t fan : 4; // Zero-based fan identifier 337

 uint8_t mode : 2; // Mode specifier 338

 } *wValue; 339

 340

 341

 // A basic sanity check--if the data we're provided with is 342

 // going to be more than 32 bytes long, we'll reject it. In 343

 // testing, anything more than this probably indicates that 344

 // something has gone wrong. 345

 // 346

 // If this were a real application, the specification would 347

 // probably include a limit on the number of points that a 348

 // user could specify. 349

 if (setup->wLength > sizeof(modeBuf)) 350

 return USB_STATUS_REQ_ERR; 351

 352

 // Sugar for accessing the fields we want. 353

 wValue = (struct wValue_TypeDef*) &(setup->wValue); 354

 355

 // As with the software, we're only implementing the code 356

 // for handling voltage mode data. Accordingly, we have to 357

 // fail if speed mode data or anything else is provided. 358

 if (wValue->mode != FANCTRL_MODE_VOLTS) 359

 return USB_STATUS_REQ_ERR; 360

 361

 // We've only got the one fan, so we can hardcode the check 362

 // of the fan identifier, but in real-world code this would 363

 // likely be a check against the number of fans supported. 364

 if (wValue->fan != 0) 365

 return USB_STATUS_REQ_ERR; 366

 367

 // In real code, this would be a switch and a set of calls to 368

 // some split-out verification functions. However, since we 369

 // only handle voltage mode data, it's included here. 370

 // 371

 // If the length of the data is odd, we can be sure that the 372

186 of 304 Liam McSherry
 EC1520839

 // data is wrong, as each entry must be two bytes long. The 373

 // same applies if there is no data. 374

 if (setup->wLength == 0 || (setup->wLength % 2) == 1) 375

 return USB_STATUS_REQ_ERR; 376

 377

 // We now need to iterate through the data, verifying each 378

 // individual entry. The first step in this is reading the 379

 // data into the buffer. 380

 USBD_Read(381

 0, &modeBuf, setup->wLength, 382

 ReqHandler_SetFanMode_ProcessData 383

); 384

 385

 return USB_STATUS_OK; 386

} 387

 388

// Callback for handling data read by the [ReqHandler_SetFanMode] 389

// function. This is effectively an extension of that method. 390

int ReqHandler_SetFanMode_ProcessData(391

 USB_Status_TypeDef status, 392

 uint32_t xferred, 393

 uint32_t remaining 394

) { 395

 396

 // The format of each voltage control mode entry. 397

 struct vcmEntry_TypeDef { 398

 bool end : 1; // Whether this is the last entry 399

 uint8_t temp : 7; // The temperature, degrees C. 400

 uint8_t voltage ; // The controlled voltage 401

 } *vcmEntry; 402

 if (status != USB_STATUS_OK) 403

 return status; 404

 405

 if (remaining > 0) 406

 return USB_STATUS_REQ_ERR; 407

 408

 // We then want to view the buffer as a set of entries, and 409

 // iterate through the set (verifying as we go). 410

 const int numEntries = xferred / 2; 411

 vcmEntry = (struct vcmEntry_TypeDef*) &modeBuf; 412

 413

 for (int i = 0; i < numEntries; i++) { 414

 // It is impossible for temperature and voltage data to 415

 // be invalid, as the defined range of valid values and 416

 // the possible range of values are the same. As such, 417

 // all we need to verify is that the END bit is correct. 418

 // 419

 // This is done by checking that the END bit is only set 420

 // if this is the last index (which, given arrays are 421

 // zero-indexed, is one less than the length). 422

 if (i != (numEntries - 1) && vcmEntry[i].end) 423

Liam McSherry 187 of 304
EC1520839

 return USB_STATUS_REQ_ERR; 424

 // And also by checking that the last entry does have the 425

 // END bit set. 426

 else if (i == (numEntries - 1) && !vcmEntry[i].end) 427

 return USB_STATUS_REQ_ERR; 428

 } 429

 430

 modeBufSize = xferred; 431

 432

 // If we ended up here, then the request succeeded. 433

 return USB_STATUS_OK; 434

} 435

 436

// Handles requests for the mode data 437

int ReqHandler_GetFanMode(const USB_Setup_TypeDef* setup) { 438

 // The format of the contents of [wValue]. 439

 struct wValue_TypeDef { 440

 uint8_t fan : 4; // Zero-based fan identifier 441

 } *wValue; 442

 443

 // If we haven't been configured, there isn't anything to 444

 // return to the host. This wouldn't happen with a real-world 445

 // application, as there would be a default configuration. 446

 if (modeBufSize == 0) 447

 return USB_STATUS_REQ_ERR; 448

 449

 wValue = (struct wValue_TypeDef*) &(setup->wValue); 450

 451

 // Again, we're hardcoding a value here for ease in testing. 452

 if (wValue->fan != 0) 453

 return USB_STATUS_REQ_ERR; 454

 455

 // Clip the requested size if it's longer than our data 456

 int byteCount = setup->wLength > modeBufSize 457

 ? modeBufSize 458

 : setup->wLength; 459

 460

 return USBD_Write(0, &modeBuf, byteCount, NULL); 461

} 462

usbconfig.h
A header containing USB-related configuration for both the vendor-provided
middleware and the firmware.

/* Author: Liam McSherry 1

 * Date: 1st March 2018 2

 * Notes: USB configuration information for the driver. Despite 3

 * it being a relatively important piece of the puzzle, 4

 * documentation for it seems relatively scarce. 5

*/ 6

#ifndef SRC_USBCONFIG_H_ 7

188 of 304 Liam McSherry
 EC1520839

#define SRC_USBCONFIG_H_ 8

 9

 10

/***** DRIVER CONFIGURATION *****/ 11

 12

// Driver in USB device mode 13

#define USB_DEVICE 14

 15

// Driver emits debug information on serial 16

#define DEBUG_USB_API 17

 18

// Driver uses TIMER0 for its timer 19

#define USB_TIMER USB_TIMER0 20

 21

#define NUM_APP_TIMERS 1 22

 23

 24

/***** DEVICE CONFIGURATION *****/ 25

 26

// No USB endpoints additional to the control endpoint used 27

#define NUM_EP_USED 0 28

 29

 30

/***** FIRMWARE CONFIGURATION *****/ 31

 32

// Vendor and Product IDs for the USB device. 33

// 34

// 1209:0001 is a pair for private use allocated by pid.codes, 35

// which we'll be using to avoid obtaining an allocation. 36

#define USB_VID 0x1209 37

#define USB_PID 0x0001 38

 39

// Request codes for fan controller class-specific requests 40

#define FANCTRL_FANID_REQ 0 // GET_FAN_ID 41

#define FANCTRL_MDSET_REQ 1 // SET_FAN_MODE 42

#define FANCTRL_MDGET_REQ 2 // GET_FAN_MODE 43

 44

// Mode data mode specifiers 45

#define FANCTRL_MODE_VOLTS 0x00 46

#define FANCTRL_MODE_SPEED 0x01 47

 48

 49

// Descriptor type value for the Binary Device Object Store (BOS) 50

// descriptor described in the USB 3.1 specification. 51

#define USB_BOS_DESCRIPTOR 15 52

// The length of the BOS descriptor, in bytes. 53

#define USB_BOS_DESCSIZE 5 54

// USB BOS Device Capability descriptor 55

#define USB_BOS_DEVCAP_DESC 16 56

 57

Liam McSherry 189 of 304
EC1520839

// Binary Device Object Store (BOS) capability type codes 58

#define BOS_USB2_EXTENSION 0x02 // USB 2.0 EXTENSION 59

#define BOS_SUPERSPEED_USB 0x03 // SUPERSPEED_USB 60

#define BOS_CAP_PLATFORM 0x05 // PLATFORM 61

 62

// BOS SUPERSPEED_USB descriptor definitions 63

#define BOS_SSUSB_SPEED_LS 1 << 0 // Low Speed 64

#define BOS_SSUSB_SPEED_FS 1 << 1 // Full Speed 65

 66

// The value reported to the host for use in retrieving the MS 67

// OS 2.0 descriptor set. 68

#define bMS_VendorCode 0xA5 69

 70

// Microsoft OS 2.0 descriptor types 71

// Descriptor set header 72

#define MS_SETHEADER_DESC 0x00, 0x00 73

#define MS_SETHEADER_DESCSZ 0x0A, 0x00 74

// Compatible ID descriptor 75

#define MS_COMPATID_DESC 0x03, 0x00 76

#define MS_COMPATID_DESCSZ 0x14, 0x00 77

// Registry property descriptor 78

#define MS_REGISTRY_DESC 0x04, 0x00 79

#define REGISTRY_REG_SZ 0x01, 0x00 // REG_SZ type 80

#define REGISTRY_REG_ML_SZ 0x07, 0x00 // REG_MULTI_SZ 81

 82

 83

// Little-endian formatted NTDDI Windows 10 specifier. 84

#define NTDDI_WIN10_LE 0x00, 0x00, 0x00, 0x0A 85

#define NTDDI_WINBLUE_LE 0x00, 0x00, 0x03, 0x06 86

 87

#endif /* SRC_USBCONFIG_H_ */88

190 of 304 Liam McSherry
 EC1520839

C4 USB Prototype — Software

The following is the source code for the USB prototype software, written in C#
and targeting the .NET Framework. The software provides a user interface which
enables control of the fan controller represented by the USB prototype firmware.
Discussion on the software is contained in Appendix G1.5.

Main.cs
The software entry point, responsible for processing user input and instructing
the fan controller through the exposed interface.

/* Author: Liam McSherry 1

 * Date: 3rd March 2018 2

 * Notes: Entry point to the USB prototype software, includes 3

 * basic setup and related. 4

 */ 5

using System; 6

using System.Collections.Generic; 7

using System.Linq; 8

using System.Text; 9

using System.Threading.Tasks; 10

using System.Timers; 11

 12

using Windows.Devices.Enumeration; 13

using Windows.Devices.Usb; 14

 15

namespace McSherry.Edu.HND.UsbProto 16

{ 17

 class Program 18

 { 19

 // The Vendor and Product IDs of the device. 20

 private const uint VID = 0x1209, PID = 0x0001; 21

 22

 23

 // Timer for requesting fan status updates. 24

 private static Timer _updateTimer; 25

 private static FanController _fanCtrl; 26

 27

 static void Main(string[] args) 28

 { 29

 while (true) 30

 { 31

 MainAsync(args).Wait(); 32

 } 33

 } 34

 35

 static async Task MainAsync(string[] args) 36

 { 37

 var aqs = UsbDevice.GetDeviceSelector(VID, PID); 38

 var devs = await DeviceInformation.FindAllAsync(aqs); 39

Liam McSherry 191 of 304
EC1520839

 40

 if (devs.Count > 0) 41

 { 42

 UsbDevice dev = await UsbDevice.FromIdAsync(43

 devs[0].Id 44

); 45

 46

 try 47

 { 48

 _fanCtrl = new FanController(dev); 49

 } 50

 catch (ArgumentException aex) 51

 { 52

 Console.WriteLine(53

 "Attempted to initialise with \"{0}\".", 54

 devs[0].Name 55

); 56

 Console.WriteLine("Threw {0}:", 57

 aex.GetType().Name); 58

 Console.WriteLine("\t{0}", 59

 aex.Message); 60

 Console.WriteLine("Press <ENTER> to retry."); 61

 Console.ReadLine(); 62

 63

 dev.Dispose(); 64

 65

 return; 66

 } 67

 } 68

 else 69

 { 70

 Console.WriteLine("No devices found."); 71

 Console.WriteLine("Press <ENTER> to recheck."); 72

 Console.ReadLine(); 73

 74

 return; 75

 } 76

 77

 Console.WriteLine("Initialised fan controller."); 78

 Console.WriteLine("Fans Supported: {0}", 79

 _fanCtrl.FansSupported); 80

 81

 Console.Write("Populating fan information... "); 82

 _fanCtrl.Update(); 83

 Console.WriteLine("Done."); 84

 85

 // Set up timer for 1s status refresh 86

 _updateTimer = new Timer(1000 /* ms */) 87

 { 88

 AutoReset = true, 89

 Enabled = true 90

192 of 304 Liam McSherry
 EC1520839

 }; 91

 _updateTimer.Elapsed += UpdateHandler; 92

 // Kick things off by printing the first status. 93

 Console.WriteLine(); 94

 PrintFanStatus(); 95

 // Hide the cursor 96

 Console.CursorVisible = false; 97

 98

 _cursorTopStart = Console.CursorTop; 99

 Console.Write("\n> "); 100

 _cursorTop = Console.CursorTop; 101

 Console.CursorTop--; 102

 103

 _updateTimer.Start(); 104

 105

 bool keepRunning = true; 106

 while (keepRunning) 107

 { 108

 // Read keys, but don't display automatically. If 109

 // they were displayed automatically, it would 110

 // mess with the status reporting. 111

 var keyInfo = Console.ReadKey(intercept: true); 112

 113

 keepRunning = ProcessKeys(keyInfo); 114

 } 115

 116

 // Clean-up before retry 117

 _fanCtrl.Dispose(); 118

 _updateTimer.Dispose(); 119

 } 120

 121

 122

 static void UpdateHandler(object s, ElapsedEventArgs e) 123

 { 124

 _fanCtrl.Update(); 125

 126

 // Number of lines to clear to replace the status 127

 // information we've already printed. 128

 int linesToClear = _fanCtrl.FansSupported + 1; 129

 130

 // Start of the first line of status information 131

 Console.SetCursorPosition(132

 left: 0, 133

 top: Console.CursorTop - linesToClear 134

); 135

 136

 // Overwrite status information with spaces 137

 Console.Write(138

 new string(139

 ' ', linesToClear * Console.WindowWidth 140

) 141

Liam McSherry 193 of 304
EC1520839

); 142

 143

 // Return to first line of cleared status information 144

 Console.SetCursorPosition(145

 left: 0, 146

 top: Console.CursorTop - linesToClear 147

); 148

 149

 // Write out status information 150

 PrintFanStatus(); 151

 } 152

 153

 static void PrintFanStatus() 154

 { 155

 Console.WriteLine("TIME\t\tFAN\t\tCURRENT"); 156

 157

 foreach (var fs in _fanCtrl.Fans) 158

 { 159

 Console.WriteLine(160

 "{0}\t{1}\t\t{2}", 161

 fs.AsAtUtc.ToLongTimeString(), 162

 fs.Identifier, 163

 $"{fs.Current} mA" 164

); 165

 } 166

 } 167

 168

 static StringBuilder _keysRead = new StringBuilder(); 169

 static int _cursorTopStart, _cursorTop; 170

 static bool ProcessKeys(ConsoleKeyInfo keyInfo) 171

 { 172

 // Clears the output line and writes the string. 173

 void refreshLine(string s) 174

 { 175

 // Move to where we left off before 176

 Console.CursorLeft = 0; 177

 Console.CursorTop = _cursorTop; 178

 179

 // Clear the output line 180

 Console.Write(181

 new string(' ', Console.WindowWidth) 182

); 183

 184

 // Reset to start of cleared line 185

 Console.CursorLeft = 0; 186

 Console.CursorTop = _cursorTop; 187

 188

 // Write string to the output 189

 Console.Write(s); 190

 191

194 of 304 Liam McSherry
 EC1520839

 // Move to the start line so the status updater 192

 // doesn't clear the line we've just written 193

 Console.CursorLeft = 0; 194

 Console.CursorTop = _cursorTopStart; 195

 } 196

 // Writes the specified string and moves down a line 197

 void writeLine(string s) 198

 { 199

 // Move to where we left off 200

 Console.CursorTop = _cursorTop; 201

 Console.CursorLeft = 0; 202

 203

 // Write the string and move to the next line 204

 Console.WriteLine($"\n{s}\n"); 205

 206

 // Update position tracker 207

 _cursorTop += 3; 208

 209

 // Return to where the status updater wants to be 210

 Console.CursorLeft = 0; 211

 Console.CursorTop = _cursorTopStart; 212

 } 213

 214

 bool retVal = true; 215

 216

 // If the user backspaces, erase a character 217

 if (keyInfo.Key == ConsoleKey.Backspace) 218

 { 219

 _keysRead.Length = _keysRead.Length - 1; 220

 221

 refreshLine($"> {_keysRead}"); 222

 } 223

 // If the key isn't enter... 224

 else if (keyInfo.Key != ConsoleKey.Enter) 225

 { 226

 // If we've reached the end of the buffer, don't 227

 // process any more keys 228

 if (_keysRead.Length >= Console.WindowWidth) 229

 return retVal; 230

 231

 // Add it to our record of keys. 232

 _keysRead.Append(keyInfo.KeyChar); 233

 234

 refreshLine($"> {_keysRead}"); 235

 } 236

 // If the enter key is pressed, process what we've 237

 // read so far. 238

 else 239

 { 240

 const string SET_FAN_MODE = "set"; 241

 const string GET_FAN_MODE = "get"; 242

Liam McSherry 195 of 304
EC1520839

 243

 var atoms = _keysRead.ToString() 244

 .Split(' ') 245

 .Where(s => s.Length > 0) 246

 .Select(s => s.ToLower()); 247

 248

 _keysRead.Clear(); 249

 250

 // Do nothing if there is no input. 251

 if (!atoms.Any()) 252

 return retVal; 253

 254

 // Use the first atom as the command. 255

 switch (atoms.First()) 256

 { 257

 /***** Set fan mode *****/ 258

 case SET_FAN_MODE: 259

 { 260

 // Parse all parameter atoms. 261

 var parsed = atoms.Skip(1) // Skip first 262

 .Select(ParseAtom); 263

 264

 // Presence of a null means that one or 265

 // more of the parameters is invalid. 266

 if (parsed.Any(arg => arg is null)) 267

 { 268

 writeLine("One or more atoms is " + 269

 "invalid."); 270

 271

 break; 272

 } 273

 274

 // We know none are null, so we can get 275

 // rid of the Nullable<T> wrapper. 276

 var args = parsed.Select(a => a.Value); 277

 278

 // Parameters must all be of the voltage 279

 // mode, or all of one speed mode. 280

 if (args.First().Mode == Mode.Voltage && 281

 args.Any(a => a.Mode != Mode.Voltage) 282

) 283

 { 284

 writeLine("The first atom specifies " 285

 + "a voltage, but not all " + 286

 "subsequent atoms do."); 287

 288

 break; 289

 } 290

 else if (291

 args.First().Mode != Mode.Voltage && 292

 args.Any(a => a.Mode == Mode.Voltage) 293

196 of 304 Liam McSherry
 EC1520839

) 294

 { 295

 writeLine("The first atom specifies " 296

 + "a speed, but not all " + 297

 "subsequent atoms do."); 298

 299

 break; 300

 } 301

 302

 // Having verified that all arguments 303

 // are valid, use the value of the first 304

 // to determine which mode to set. 305

 if (args.First().Mode == Mode.Voltage) 306

 { 307

 bool worked; 308

 try 309

 { 310

 var points = args.Select(311

 a => ((double)a.Qty, a.Tmp) 312

); 313

 314

 worked = _fanCtrl.SetVoltageMode(315

 _fanCtrl.Fans[0], points 316

); 317

 318

 if (worked) 319

 { 320

 writeLine(321

 "Fan configuration " + 322

 "updated." 323

); 324

 } 325

 else 326

 { 327

 writeLine(328

 "Fan configuration " + 329

 "failed." 330

); 331

 } 332

 } 333

 catch (Exception e) when (334

 e is ArgumentException || 335

 e is ArgumentOutOfRangeException 336

) 337

 { 338

 writeLine(e.Message); 339

 worked = false; 340

 } 341

 } 342

 else 343

 { 344

Liam McSherry 197 of 304
EC1520839

 writeLine(345

 "Configuration command " + 346

 "acknowledged, parameters " + 347

 "verified, not implemented." 348

); 349

 } 350

 351

 } break; 352

 353

 /***** Get fan mode *****/ 354

 case GET_FAN_MODE: 355

 { 356

 var points = _fanCtrl.GetMode(357

 _fanCtrl.Fans[0] 358

); 359

 360

 int i = 1; 361

 foreach (var (V, T) in points) 362

 { 363

 writeLine(364

 $"Point #{i++}: {V}V at {T}C" 365

); 366

 } 367

 } break; 368

 369

 /***** Unrecognised command *****/ 370

 default: 371

 { 372

 writeLine("Unrecognised command."); 373

 } break; 374

 } 375

 376

 refreshLine("> "); 377

 } 378

 379

 return retVal; 380

 } 381

 382

 // Possible modes represented in mode data. 383

 enum Mode { Voltage, SpeedPercent, SpeedRpm }; 384

 // Attempts to parse an atom. 385

 static (Mode Mode, int Qty, int Tmp)? ParseAtom(string a) 386

 { 387

 // ASCII/UTF-8 number codepoint range is 0x30-0x39. 388

 bool isNumeric(char c) => c >= 0x30 && c <= 0x39; 389

 390

 // The following is not the most efficient way to 391

 // retrieve each part of the atom, but it is probably 392

 // one of the easiest ways, and so is good enough for 393

 // demonstration purposes. 394

 // 395

198 of 304 Liam McSherry
 EC1520839

 // The controlled quantity comes first, and is 396

 // entirely numeric. 397

 var strQuantity = a.TakeWhile(isNumeric); 398

 // The controlled quantity is followed by the unit, 399

 // specifying what the quantity is. 400

 var strUnit = a.SkipWhile(isNumeric) 401

 .TakeWhile(c => !isNumeric(c)); 402

 // Which is immediately followed by the temperature. 403

 var strTemp = a.SkipWhile(isNumeric) 404

 .SkipWhile(c => !isNumeric(c)) 405

 .TakeWhile(isNumeric); 406

 // Which is itself immediately followed by a unit of 407

 // temperature, which will always be C here. 408

 var strTempUnit = a.SkipWhile(isNumeric) 409

 .SkipWhile(c => !isNumeric(c)) 410

 .SkipWhile(isNumeric) 411

 .TakeWhile(c => !isNumeric(c)); 412

 413

 // Because we included the '@' symbol as a separator, 414

 // each of the units will have it at the end (if they 415

 // are correct). 416

 Mode mode; 417

 switch (new string(strUnit.ToArray())) 418

 { 419

 case "v@": mode = Mode.Voltage; break; 420

 case "%@": mode = Mode.SpeedPercent; break; 421

 case "rpm@": mode = Mode.SpeedRpm; break; 422

 423

 // If we don't recognise the unit, then we can't 424

 // continue with parsing the atom. 425

 default: return null; 426

 } 427

 428

 // Knowing the unit, we can now enforce the limits on 429

 // values imposed by the Appendix D protocol. 430

 int quantity, temp; 431

 // To do this, the strings must be parsed to numbers, 432

 // and we must fail if they are not valid numbers. 433

 if (!int.TryParse(new string(strQuantity.ToArray()), 434

 out quantity) || 435

 !int.TryParse(new string(strTemp.ToArray()), 436

 out temp)) 437

 { 438

 return null; 439

 } 440

 441

 // A temperature must be in the range 0-127C. 442

 if (temp < 0 || temp > 127) 443

 return null; 444

 445

Liam McSherry 199 of 304
EC1520839

 // The validity of the controlled quantity depends 446

 // on the mode specified. 447

 bool valQty; 448

 switch (mode) 449

 { 450

 // The voltage is 0-12V. Technically it should be 451

 // in ~47mV increments, but this simplifies the 452

 // demonstration code a little. 453

 case Mode.Voltage: 454

 valQty = quantity > 0 && quantity <= 12; 455

 break; 456

 457

 // The percentage must be 0-100%. 458

 case Mode.SpeedPercent: 459

 valQty = quantity > 0 && quantity <= 100; 460

 break; 461

 462

 // The RPM must be 0 to 2**15 - 1. 463

 case Mode.SpeedRpm: 464

 valQty = quantity > 0 && 465

 quantity <= (2 << 15) - 1; 466

 break; 467

 468

 // This will never happen, but the compiler 469

 // complains since it technically means the 470

 // variable could remain uninitialised. 471

 default: valQty = false; break; 472

 } 473

 474

 // We can't continue if the quantity is invalid. 475

 if (!valQty) 476

 return null; 477

 478

 // Successful parse. 479

 return (mode, quantity, temp); 480

 } 481

 } 482

} 483

FanController.cs
An abstraction over the USB interface to the fan controller which implements the
protocol contained in Appendix D.

/* Author: Liam McSherry 1

 * Date: 3rd March 2018 2

 * Notes: Represents a USB-connected fan controller. 3

 */ 4

using System; 5

using System.Collections.Generic; 6

using System.Linq; 7

using System.Text; 8

200 of 304 Liam McSherry
 EC1520839

using System.Threading.Tasks; 9

using System.Timers; 10

using System.IO; 11

 12

using System.Runtime.InteropServices.WindowsRuntime; 13

using Windows.Foundation; 14

using Windows.Storage.Streams; 15

using Windows.Devices.Usb; 16

 17

namespace McSherry.Edu.HND.UsbProto 18

{ 19

 using TransferType = UsbControlTransferType; 20

 21

 /// <summary> 22

 /// <para> 23

 /// Represents a USB-connected fan controller. 24

 /// </para> 25

 /// </summary> 26

 public sealed class FanController 27

 : IDisposable 28

 { 29

 // The USB Vendor and Product IDs of controllers we'll 30

 // attempt to recognise as valid. 31

 private const uint VendorID = 0x1209; 32

 private const uint ProductID = 0x0001; 33

 34

 // The descriptor type and size for the fan controller 35

 // configuration descriptor. 36

 private const byte FccDescriptor = 0x20; 37

 private const byte FccDescriptorSize = 8; 38

 // The dummy version value we're reporting. 39

 private const uint FccVersion = 0x0011; 40

 41

 /// <summary> 42

 /// <para> 43

 /// Parses a fan controller configuration descriptor from 44

 /// a provided <see cref="UsbDescriptor"/>. 45

 /// </para> 46

 /// </summary> 47

 /// <param name="desc"> 48

 /// The <see cref="UsbDescriptor"/> to parse. 49

 /// </param> 50

 /// <returns> 51

 /// A tuple containing the number of fans supported by 52

 /// the controller and the specification version the 53

 /// controller conforms to. 54

 /// </returns> 55

 /// <exception cref="FormatException"> 56

 /// The <see cref="UsbDescriptor"/> was not in a valid 57

 /// format for a fan controller configuration descriptor. 58

 /// </exception> 59

Liam McSherry 201 of 304
EC1520839

 private static (int fans, uint version) _parseFccDesc(60

 UsbDescriptor desc 61

) 62

 { 63

 // Field positions 64

 const int bLength = 0, 65

 bDescriptorType = 1, 66

 bmAttributes = 2, 67

 bcdVersion = 3; 68

 69

 70

 int fans; 71

 uint version; 72

 var buf = new byte[8]; 73

 74

 desc.ReadDescriptorBuffer(buf.AsBuffer()); 75

 76

 // Basic verification: length and type 77

 if (buf[bLength] != FccDescriptorSize || 78

 buf[bDescriptorType] != FccDescriptor) 79

 { 80

 throw new FormatException(81

 "The provided descriptor did not specify " + 82

 "the correct length and/or descriptor type." 83

); 84

 } 85

 86

 // The number of fans supported is stored in the 87

 // lowest four bits, and is zero-based. 88

 fans = (int)(buf[bmAttributes] & 0x0F) + 1; 89

 90

 // The version is stored as two bytes, in little- 91

 // -endian order. 92

 version = buf[bcdVersion] | 93

 (uint)(buf[bcdVersion + 1] << 8); 94

 95

 return (fans, version); 96

 } 97

 98

 99

 // The fan controller USB device. 100

 private readonly UsbDevice _dev; 101

 // List of fan statuses. 102

 private readonly List<FanStatus> _fans; 103

 104

 105

 /// <summary> 106

 /// <para> 107

 /// Creates a new <see cref="FanController"/> from a 108

 /// provided <see cref="UsbDevice"/> instance. 109

 /// </para> 110

202 of 304 Liam McSherry
 EC1520839

 /// </summary> 111

 /// <param name="device"> 112

 /// The <see cref="UsbDevice"/> from which to create the 113

 /// new instance. 114

 /// </param> 115

 /// <exception cref="ArgumentException"> 116

 /// <paramref name="device"/> is not recognised as a 117

 /// valid fan controller. 118

 /// </exception> 119

 /// <exception cref="ArgumentOutOfRangeException"> 120

 /// <paramref name="device"/> reports a fan controller 121

 /// specification version which is not supported. 122

 /// </exception> 123

 /// <exception cref="ArgumentNullException"> 124

 /// <paramref name="device"/> is null. 125

 /// </exception> 126

 public FanController(UsbDevice device) 127

 { 128

 // ***** Null check 129

 if (device == null) 130

 { 131

 throw new ArgumentNullException(132

 paramName: nameof(device) 133

); 134

 } 135

 136

 // ***** Valid fan controller checks 137

 // 138

 // Device reports the anticipated VID/PID pair 139

 if (device.DeviceDescriptor.VendorId != VendorID || 140

 device.DeviceDescriptor.ProductId != ProductID) 141

 { 142

 throw new ArgumentException(143

 "The USB device did not report the expected " 144

 + "Vendor and Product Identifiers." 145

); 146

 } 147

 148

 // Device reports the anticipated config. descriptor. 149

 var fccDesc = 150

 (from d in device.Configuration.Descriptors 151

 where d.DescriptorType == FccDescriptor && 152

 d.Length == FccDescriptorSize 153

 select d).FirstOrDefault(); 154

 // Null means no results 155

 if (fccDesc == null) 156

 { 157

 throw new ArgumentException(158

 "The USB device did not report a fan " + 159

 "controller configuration descriptor." 160

); 161

Liam McSherry 203 of 304
EC1520839

 } 162

 163

 // Attempt to parse the descriptor. 164

 uint version; 165

 try 166

 { 167

 (this.FansSupported, version) = _parseFccDesc(168

 fccDesc 169

); 170

 } 171

 // Report failure. 172

 catch (FormatException fex) 173

 { 174

 throw new ArgumentException(175

 "The USB device reported a fan controller " + 176

 "configuration descriptor which was in an " + 177

 "invalid format.", 178

 fex 179

); 180

 } 181

 182

 // Device reports a supported version 183

 if (version != FccVersion) 184

 { 185

 throw new ArgumentOutOfRangeException(186

 "The USB device reported a fan controller " + 187

 "specification version which was not " + 188

 "supported." 189

); 190

 } 191

 192

 _dev = device; 193

 _fans = new List<FanStatus>((int)this.FansSupported); 194

 } 195

 196

 197

 /// <summary> 198

 /// The number of fans the controller supports. 199

 /// </summary> 200

 public int FansSupported { get; } 201

 202

 /// <summary> 203

 /// <para> 204

 /// Status information for all supported fans. 205

 /// </para> 206

 /// </summary> 207

 public IReadOnlyList<FanStatus> Fans => _fans; 208

 209

 210

204 of 304 Liam McSherry
 EC1520839

 /// <summary> 211

 /// <para> 212

 /// Retrieves the current status of connected fans and 213

 /// updates the contents of <see cref="Fans"/>. 214

 /// </para> 215

 /// </summary> 216

 public void Update() 217

 { 218

 var usbSetup = new UsbSetupPacket 219

 { 220

 // Device-to-host, class-specific, device request 221

 RequestType = new UsbControlRequestType 222

 { 223

 Direction = UsbTransferDirection.In, 224

 ControlTransferType = TransferType.Class, 225

 Recipient = UsbControlRecipient.Device 226

 }, 227

 228

 // Request 0 (GET_FAN_ID) 229

 Request = 0, 230

 231

 // Default value to zero, it'll actually be used 232

 // to specify the fan we want 233

 Value = 0, 234

 235

 // Would usually specify the receiving interface, 236

 // but our USB device doesn't care. 237

 Index = 0, 238

 239

 // GET_FAN_ID responses are 8 bytes long. 240

 Length = 8, 241

 }; 242

 243

 // Query for each of the fans supported. 244

 for (ushort i = 0; i < this.FansSupported; i++) 245

 { 246

 // Adjust our SETUP packet so we specify that we 247

 // want to query the next fan. We don't need to 248

 // worry about the upper byte, as we'll never 249

 // exceed 255 fans. 250

 usbSetup.Value = i; 251

 252

 // Buffer for the returned result 253

 var resBuf = new byte[8]; 254

 255

 // Send the request and retrieve an awaitable 256

 var task = _dev.SendControlInTransferAsync(257

 usbSetup, resBuf.AsBuffer() 258

); 259

 260

Liam McSherry 205 of 304
EC1520839

 // Wait for completion. This wouldn't be suitable 261

 // in real code as we'd want to make sure there 262

 // was no possibility of infinitely looping here, 263

 // but we can work around such errors in testing. 264

 while (task.Status == AsyncStatus.Started) 265

 continue; 266

 267

 // We'd also want to report a real error message 268

 // here if this were real code. 269

 if (task.Status != AsyncStatus.Completed) 270

 { 271

 throw new InvalidOperationException(272

 "Error in transfer." 273

); 274

 } 275

 276

 // Parse the buffer into a [FanStatus]. 277

 var fs = FanStatus.Parse(resBuf.ToArray()); 278

 279

 // Assign the [FanStatus] to the list, creating 280

 // the space necessary if the list is empty. 281

 if (_fans.Count == 0) 282

 { 283

 _fans.Add(fs); 284

 } 285

 else 286

 { 287

 _fans[i] = fs; 288

 } 289

 } 290

 } 291

 292

 /// <summary> 293

 /// <para> 294

 /// Configures the fan controller to adjust the speed of 295

 /// the specified fan in accordance with the provided set 296

 /// of points. 297

 /// </para> 298

 /// </summary> 299

 /// <param name="fan"> 300

 /// The fan for which to set the control configuration. 301

 /// </param> 302

 /// <param name="points"> 303

 /// A set of points determining the voltage supplied to 304

 /// the fan at specified temperatures. 305

 /// </param> 306

 /// <returns> 307

 /// True if the fan is successfully configured, false if 308

 /// otherwise. 309

 /// </returns> 310

206 of 304 Liam McSherry
 EC1520839

 /// <exception cref="ArgumentNullException"> 311

 /// <paramref name="points"/> is null. 312

 /// </exception> 313

 /// <exception cref="ArgumentOutOfRangeException"> 314

 /// <paramref name="points"/> contains a point with an 315

 /// invalid voltage or temperature. 316

 /// </exception> 317

 /// <exception cref="ArgumentException"> 318

 /// <paramref name="fan"/> does not specify a valid fan. 319

 /// </exception> 320

 /// <exception cref="InvalidOperationException"> 321

 /// Voltage control is not supported for the specified 322

 /// fan. 323

 /// </exception> 324

 public bool SetVoltageMode(325

 FanStatus fan, 326

 IEnumerable<(double Voltage, int Temperature)> points 327

) 328

 { 329

 // The voltage is provided to the controller as a 330

 // multiple of ~47.06mV, so any absolute value given 331

 // here must be converted to this format. 332

 byte normaliseVolts(double volts) 333

 => (byte)Math.Round(volts / 47.06E-3); 334

 335

 if (points == null) 336

 { 337

 throw new ArgumentNullException(338

 "The provided set of points is null." 339

); 340

 } 341

 342

 if (!_fans.Any(f => f.Identifier == fan.Identifier)) 343

 { 344

 throw new ArgumentException(345

 "The specified fan is not valid." 346

); 347

 } 348

 349

 if (!fan.ControlModes.Voltage) 350

 { 351

 throw new InvalidOperationException(352

 "The specified fan does not support " + 353

 "voltage control." 354

); 355

 } 356

 357

 // Voltage must be in the range 0-12V. 358

 if (points.Any(p => p.Voltage < 0 || p.Voltage > 12)) 359

 { 360

 throw new ArgumentOutOfRangeException(361

Liam McSherry 207 of 304
EC1520839

 "The voltage specified for one of the " + 362

 "provided points was not between 0 and 12." 363

); 364

 } 365

 366

 // Temperature must be in the range 0-127C. 367

 if (points.Any(p => p.Temperature < 0 || 368

 p.Temperature > 127)) 369

 { 370

 throw new ArgumentOutOfRangeException(371

 "The temperature specified for one of the " + 372

 "provided points was not between 0 and 127." 373

); 374

 } 375

 376

 377

 // Buffer for containing mode data to be transmitted 378

 // to the device. Each voltage control entry is two 379

 // bytes long. 380

 var ms = new MemoryStream(); 381

 382

 // Each point must be serialised. 383

 foreach (var (Voltage, Temperature) in points) 384

 { 385

 // First byte is the temperature, with the zeroth 386

 // bit indicating whether this is the end. 387

 ms.WriteByte((byte)(Temperature << 1)); 388

 // Second byte is the voltage level. 389

 ms.WriteByte(normaliseVolts(Voltage)); 390

 } 391

 392

 // For the last byte, we want to set the END bit. 393

 var bufArr = ms.ToArray(); 394

 bufArr[bufArr.Length - 2] |= 1; 395

 396

 ms.Dispose(); 397

 398

 var usbSetup = new UsbSetupPacket 399

 { 400

 RequestType = new UsbControlRequestType 401

 { 402

 Direction = UsbTransferDirection.Out, 403

 ControlTransferType = TransferType.Class, 404

 Recipient = UsbControlRecipient.Device, 405

 }, 406

 407

 // SET_FAN_MODE is 0x01 408

 Request = 0x01, 409

 410

 Index = 0, 411

 412

208 of 304 Liam McSherry
 EC1520839

 // Each entry is two bytes long. 413

 Length = (uint)points.Count() * 2, 414

 415

 // See Appendix D2.4.3 (Table 4), the value is a 416

 // bit field containing information about the 417

 // request. Mostly reserved. 418

 Value = (uint)(_fans.IndexOf(fan) & 0xF) | 419

 (0b00U << 4) 420

 }; 421

 422

 var ba = bufArr.AsBuffer(); 423

 424

 var task = _dev.SendControlOutTransferAsync(425

 usbSetup, bufArr.AsBuffer() 426

); 427

 428

 // Wait until completion 429

 while (task.Status == AsyncStatus.Started) 430

 continue; 431

 432

 // Indicate failure if the task fails 433

 if (task.Status != AsyncStatus.Completed) 434

 return false; 435

 436

 // If it doesn't fail, it succeeds. 437

 return true; 438

 } 439

 440

 /// <summary> 441

 /// Retrieves the current configuration of the fan 442

 /// controller as a set of points. 443

 /// </summary> 444

 /// <param name="fan"> 445

 /// The fan the configuration of which to retrieve. 446

 /// </param> 447

 /// <returns> 448

 /// A set of points representing the configuration of 449

 /// the fan. 450

 /// </returns> 451

 /// <exception cref="ArgumentException"> 452

 /// <paramref name="fan"/> does not specify a valid fan. 453

 /// </exception> 454

 public IEnumerable<(double Voltage, int Temperature)> 455

 GetMode(FanStatus fan) 456

 { 457

 if (!_fans.Any(f => f.Identifier == fan.Identifier)) 458

 { 459

 throw new ArgumentException(460

 "The specified fan is not valid." 461

); 462

 } 463

Liam McSherry 209 of 304
EC1520839

 464

 // We're only handling the case of voltage mode data 465

 // here, but in a real application there it would be 466

 // possible to receive speed mode data. 467

 // 468

 // We first need to retrieve the data. 469

 var usbSetup = new UsbSetupPacket 470

 { 471

 RequestType = new UsbControlRequestType 472

 { 473

 Direction = UsbTransferDirection.In, 474

 ControlTransferType = TransferType.Class, 475

 Recipient = UsbControlRecipient.Device 476

 }, 477

 478

 // Request 2 (GET_FAN_MODE) 479

 Request = 2, 480

 481

 // The value specifies the fan we want 482

 Value = (uint)_fans.FindIndex(483

 f => f.Identifier == fan.Identifier 484

), 485

 486

 // Normally specifies the interface, but our 487

 // device doesn't care so this is ignored. 488

 Index = 0, 489

 490

 // We don't know the length ahead of time, so 491

 // we specify the maximum length. 492

 Length = 32 493

 }; 494

 495

 // We know this is the maximum size that the device 496

 // can return, but in the real world we'd have some 497

 // indicator of total length (which wasn't included 498

 // in the Appendix D protocol). 499

 var buf = new byte[32]; 500

 501

 var task = _dev.SendControlInTransferAsync(502

 usbSetup, buf.AsBuffer() 503

); 504

 505

 // Wait for completion 506

 while (task.Status == AsyncStatus.Started) 507

 continue; 508

 509

 if (task.Status != AsyncStatus.Completed) 510

 { 511

 throw new InvalidOperationException(512

 "Error in transfer." 513

); 514

210 of 304 Liam McSherry
 EC1520839

 } 515

 516

 // We now deserialise the points. They're in the same 517

 // format as when we sent them, so it's simple. 518

 var points = new List<(double, int)>(); 519

 for (int i = 0; i < buf.Length; i += 2) 520

 { 521

 // Break if the END bit is set 522

 if ((buf[i] & 1) > 0) 523

 break; 524

 525

 points.Add((526

 // The temperature field is the upper seven 527

 // bits of the first byte of the entry. 528

 (buf[i] & 0b1111_1110) >> 1, 529

 // And the voltage field is the second byte 530

 // of the entry, representing the 0-12V range 531

 // as portions of 1/255. 532

 (buf[i + 1] * 12) / 255 533

)); 534

 } 535

 536

 return points.AsReadOnly(); 537

 } 538

 539

 /// <summary> 540

 /// <para> 541

 /// Disposes resources held by the instance. 542

 /// </para> 543

 /// </summary> 544

 public void Dispose() 545

 { 546

 _dev.Dispose(); 547

 _fans.Clear(); 548

 } 549

 } 550

 551

 /// <summary> 552

 /// <para> 553

 /// Represents the status at a particular point in time of a 554

 /// fan connected to the controller. 555

 /// </para> 556

 /// </summary> 557

 public struct FanStatus 558

 { 559

 /// <summary> 560

 /// <para> 561

 /// Parses a <see cref="FanStatus"/> from a byte array. 562

 /// </para> 563

 /// </summary> 564

Liam McSherry 211 of 304
EC1520839

 /// <param name="fanId"> 565

 /// An array containing the response from the controller 566

 /// when fan identification was requested. 567

 /// </param> 568

 /// <returns> 569

 /// The <see cref="FanStatus"/> represented by the bytes 570

 /// in the byte array. 571

 /// </returns> 572

 /// <exception cref="ArgumentNullException"> 573

 /// <paramref name="fanId"/> is null. 574

 /// </exception> 575

 /// <exception cref="FormatException"> 576

 /// <paramref name="fanId"/> does not represent a valid 577

 /// fan identification response. 578

 /// </exception> 579

 public static FanStatus Parse(byte[] fanId) 580

 { 581

 const int FanIdLength = 8; 582

 // Field indices 583

 const int bmAttributes = 0; 584

 const int wCurrent = 3; 585

 const int iIdentifier = 5; 586

 587

 // Null check 588

 if (fanId == null) 589

 { 590

 throw new ArgumentNullException(591

 "The provided byte array was null." 592

); 593

 } 594

 595

 // Minimum length check 596

 if (fanId.Length < FanIdLength) 597

 { 598

 throw new FormatException(599

 "The provided byte array was not long " + 600

 "enough to contain valid data." 601

); 602

 } 603

 604

 // We're treating now as when the measurement was 605

 // taken, just because it's a bit simpler and makes 606

 // no real impact. 607

 var ts = DateTime.UtcNow; 608

 609

 610

 // bmAttributes is a three-byte field, provided in 611

 // little-endian byte order. 612

 uint attrs = fanId[bmAttributes] | 613

 ((uint)fanId[bmAttributes + 1] << 8) | 614

 ((uint)fanId[bmAttributes + 2] << 16) ; 615

212 of 304 Liam McSherry
 EC1520839

 616

 617

 // Voltage and speed control flags 618

 (bool S, bool V) = ((attrs & 0b10) > 0, // Bit 2 619

 (attrs & 0b01) > 0); // Bit 1 620

 621

 double startV; 622

 // If voltage control is supported, then the starting 623

 // voltage is the value in bmAttributes[6:2], which 624

 // represents steps of 375mV starting at 0 = 375mV. 625

 if (V) 626

 startV = 0.375 * (((attrs & 0b1111100) >> 2) + 1); 627

 // If it isn't supported, there is no valid value. 628

 else 629

 startV = Double.NaN; 630

 631

 double minSpeed; 632

 uint maxRpm; 633

 // If speed control is supported, then the minimum 634

 // supported speed (as a percentage of maximum) is 635

 // the value given in bmAttributes[11:7]. That value 636

 // is an integer 0..31, so we divide by 10. 637

 // 638

 // Likewise, maximum RPM is in bmAttributes[23:12]. 639

 if (S) 640

 { 641

 minSpeed = ((attrs & 0b11111000000) >> 6) / 10d; 642

 maxRpm = (attrs & 0xFFF800) >> 11; 643

 } 644

 // If it isn't supported, there is no valid value 645

 // for either. 646

 else 647

 { 648

 minSpeed = Double.NaN; 649

 maxRpm = 0; 650

 } 651

 652

 653

 // The fan current is an integer stored in bytes at 654

 // offsets 3 and 4, little-endian order. 655

 uint current = fanId[wCurrent] | 656

 ((uint)fanId[wCurrent + 1] << 8) ; 657

 658

 659

 // String index for the fan's unique identifier. This 660

 // will do, for now. 661

 uint idIndex = fanId[iIdentifier]; 662

 663

 return new FanStatus(664

 ts, idIndex.ToString(), (S, V), startV, 665

 minSpeed, maxRpm, current 666

Liam McSherry 213 of 304
EC1520839

); 667

 } 668

 669

 // The date and time this measurement was taken, in UTC. 670

 private readonly DateTime _ts; 671

 // A string identifying the fan. 672

 private readonly string _id; 673

 // The control modes supported by the fan. 674

 private readonly (bool S, bool V) _ctrl; 675

 // The voltage at which the fan will start. 676

 private readonly double _startVolts; 677

 // The minimum speed % if the fan supports speed control. 678

 private readonly double _minSpeedPc; 679

 // The maximum speed of the fan in RPM. 680

 private readonly uint _maxSpeed; 681

 // The current drawn by the fan. 682

 private readonly uint _fanCurrent; 683

 684

 internal FanStatus(685

 DateTime ts, 686

 string id, 687

 (bool Speed, bool Voltage) control, 688

 double startVolts, 689

 double minSpeedPc, 690

 uint maxSpeed, 691

 uint fanCurrent 692

) 693

 { 694

 _ts = ts; 695

 _id = id; 696

 _ctrl = control; 697

 _startVolts = startVolts; 698

 _minSpeedPc = minSpeedPc; 699

 _maxSpeed = maxSpeed; 700

 _fanCurrent = fanCurrent; 701

 } 702

 703

 /// <summary> 704

 /// <para> 705

 /// The date and time this measurement was recorded (in 706

 /// UTC). That is, the fan "as at" this time. 707

 /// </para> 708

 /// </summary> 709

 public DateTime AsAtUtc => _ts; 710

 711

 /// <summary> 712

 /// <para> 713

 /// A string uniquely identifying the fan. 714

 /// </para> 715

 /// </summary> 716

 public string Identifier => _id; 717

214 of 304 Liam McSherry
 EC1520839

 718

 /// <summary> 719

 /// <para> 720

 /// The modes of control supported for the fan. 721

 /// </para> 722

 /// </summary> 723

 public (bool Voltage, bool Speed) ControlModes => _ctrl; 724

 725

 /// <summary> 726

 /// <para> 727

 /// Where voltage control is supported, the voltage at 728

 /// which the fan will start. Otherwise, NaN. 729

 /// </para> 730

 /// </summary> 731

 public double StartVoltage => _startVolts; 732

 /// <summary> 733

 /// <para> 734

 /// Where speed control is supported, the minimum speed 735

 /// configurable for the fan as a percentage of total 736

 /// speed. Otherwise, NaN. 737

 /// </para> 738

 /// </summary> 739

 public double MinimumSpeed => _minSpeedPc; 740

 741

 /// <summary> 742

 /// <para> 743

 /// The maximum speed of the fan in RPM. If the maximum 744

 /// speed cannot be determined, zero. 745

 /// </para> 746

 /// </summary> 747

 public uint MaximumSpeed => _maxSpeed; 748

 749

 /// <summary> 750

 /// <para> 751

 /// The current, in milliamps, that the fan is currently 752

 /// drawing. 753

 /// </para> 754

 /// </summary> 755

 public uint Current => _fanCurrent; 756

 } 757

} 758

Liam McSherry 215 of 304
EC1520839

C5 PWM DAC High-Z Response Plot

The following is the source code for the script, written in R, used to plot the figure
showing the PWM DAC response under high-impedance conditions used in
Appendix F7.8.

Data_48R <- read.table("PWM-DAC-OpenCircuit-Sim-48R", header=TRUE) 1

Data_1M <- read.table("PWM-DAC-OpenCircuit-Sim-1M", header=TRUE) 2

Time_48R <- Data_48R[,1] 3

Time_1M <- Data_1M[,1] 4

V_48R <- Data_48R[,2] 5

V_1M <- Data_1M[,2] 6

 7

Seconds to milliseconds 8

Time_48R <- Time_48R * 1000 9

Time_1M <- Time_1M * 1000 10

 11

Plot 48R voltage with grid 12

plot(Time_48R, V_48R, type="l", 13

 xlab="Time (ms)", xlim=c(0,10), 14

 ylab="Voltage (V)", ylim=c(0,14), 15

 lab=c(5, 7, 7), lwd=2, col="blue") 16

 17

grid() 18

 19

Plot 1M voltage 20

points(Time_1M, V_1M, type="l", 21

 lwd=2, col="red") 22

 23

Title etc. 24

title("PWM DAC Response under High-Z Conditions") 25

 26

legend("bottomright", bg="white", 27

 legend=c("1 MΩ", "48 Ω"), pch=15, 28

 col=c("red", "blue"), text.col=c("red", "blue")) 29

 30

text(x=8.1, y=c(12.05, 7.25) + 0.75, labels=c("1 MΩ", "48 Ω"), 31

 adj=0, col=c("red", "blue")) 32

• PAGE INTENTIONALLY LEFT BLANK •

Liam McSherry
EC1520839

217 of 304

Appendix D
Fan controller device class

specification

D1 Introduction . 218

D2 Functional characteristics 219

D3 Mode data format . 223

218 of 304 Liam McSherry
 EC1520839

D1 Introduction

This appendix provides a specification for the protocol used in communicating
with the fan controller over USB. Where possible, this appendix has been written
in the style of a device class specification and following the guidelines in the USB
Common Class Specification (USB-IF, 1997).

While ideally a generic specification for fan controller-type devices would be
produced, constraints on time and consequential constraints on complexity mean
that this is likely to be infeasible. Taking this into consideration, genericity has
been maintained where practical.

D1.1 Scope
This device class specification is intended to include devices with largely similar
capabilities to the device described by the main body of the report to which this
specification is an appendix. In particular, a device is included irrespective of:

■ The number of computer fans supported.

■ Of the three principal varieties identified in the main body of the report,
the particular combination of the varieties of computer fan supported.

D1.2 Related Documents
Bradner, S., 1997. RFC 2119: Key words for use in RFCs to Indicate Requirement

Levels. [Online]
Available at: https://tools.ietf.org/html/rfc2119

USB-IF, 1997. Universal Serial Bus Common Class Specification. rev. 1.0 ed.
s.l.:Universal Serial Bus Implementers Forum.

USB-IF, 2000. Universal Serial Bus Specification. rev. 2.0 ed. s.l.:Universal Serial
Bus Implementers Forum.

D1.3 Terminology
In this appendix, the words must, must not, required, shall, shall not, should,
should not, recommended, may, and optional are to be interpreted as described in
RFC 2119 (Bradner, 1997), unless used in a section marked informative.

Other terms are to be taken as having the same meaning as they have in the USB
specification (USB-IF, 2000), unless context requires otherwise or derogation is
expressly made.

Liam McSherry 219 of 304
EC1520839

D2 Functional characteristics

D2.1 Operational model
A fan controller is largely a “fire and forget” device—once configured by the host
computer’s human operator, it requires minimal interaction with that operator or
with any automated process on the host computer. Excepting meaningful changes
in circumstances, it is not expected that any fan controller setting will be changed
after the fan controller’s initial setting up.

Accordingly, there are two broad groups of operation that can be performed on a
fan controller—operations for status monitoring (whether for the controller or
for the fans attached to it) and operations for control (although given the nature
of the fan controller, the greatest portion of the control operations are settings-
changing operations rather than operations which directly control a fan).

D2.2 Interfaces
A fan controller must support a single interface using the Default Control Pipe.

D2.3 Descriptors
A fan controller supports both the standard USB descriptors and a number of
class-specific descriptors. A fan controller must implement standard descriptors
as they are defined in the USB specification (pp. 261–274).

A fan controller must support the following class-specific descriptor. Per the USB
specification (pp. 260–261), a fan controller must return this descriptor after the
relevant configuration descriptor in the GetDescriptor(Configuration) response.

Table 1

Class-specific Fan Controller Configuration Descriptor

Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor in bytes.

1 bDescriptorType 1 20h FAN_CTRLR descriptor.

2 bmAttributes 1 Bitmask Fan controller attributes.

D7...4:

Reserved.

D3...0:

One less than the maximum
number of fans supported.

3 bcdVersion 2 BCD Fan controller device class
specification version number,
e.g. 0105h = v1.05.

5 — 3 — Reserved.

220 of 304 Liam McSherry
 EC1520839

D2.4 Requests
A fan controller supports both the standard USB device requests and a number of
class-specific requests. A fan controller must implement the standard device
requests defined in the USB specification (pp. 250–260) as they are defined by
that specification.

A fan controller must support the class-specific requests given in Table 2.

Table 2

Class-specific requests

bmRequestType bRequest wValue wIndex wLength Data

IN CLASS

INTERFACE

GET_FAN_STATUS

(0)

Fan
Selector

Interface 8 Byte set

OUT CLASS

INTERFACE

SET_FAN_MODE

(1)

Fan
Selector

Interface Depends on
wValue

Depends on
wValue

IN CLASS

INTERFACE

GET_FAN_MODE

(2)

Fan
selector

Interface Length of
fan mode

data

Fan mode, as
set by
SET_FAN_MODE

D2.4.1 GET_FAN_ID (bRequest = 0)
This request retrieves attributes and status information for a fan connected to the
controller.

The value in wValue[3:0] is a zero-based fan selector, with a value in the range
of 0 to FAN_CTRLR.bmAttributes[3:0]. The remainder of wValue is reserved
and must be reset to zero.

The data returned by this request must be in the format described by Table 3.

Liam McSherry 221 of 304
EC1520839

Table 3

GET_FAN_ID response format

Offset Field Size Value Description

0 bmAttributes 3 Bitmap The attributes for the fan.
D23…D12: Maximum rpm

If D01 = 1, the maximum rpm
of the fan.
If D01 = 0, zero.

D11…D07: Minimum speed
If D01 = 1, the minimum speed
in the range 0–31%.
If D01 = 0, zero.

D06…D02: Starting voltage
If D00 = 1, the minimum
starting voltage of the fan, in
375 mV increments
(e.g. 0 = 375 mV, 1 = 750 mV)
If D00 = 0, zero.

D01: Speed control

D00: Voltage control

3 wCurrent 2 Word The current, in milliamps, that
the fan is currently drawing.

5 iIdentifier 2 Index The index of a string identifier
which uniquely identifies the fan.

7 — 1 — Reserved.

If the fan specified in wValue does not exist, a fan controller must respond with
a request error.

D2.4.2 SET_FAN_MODE (bRequest = 1)
This request adjusts how a fan controller controls a fan connected to it.

The format of wValue is given in Table 4.

Table 4

SET_FAN_MODE request, wValue format

D15 D14 D13 D12 D11 D10 D9 D8

Reserved

D7 D6 D5 D4 D3 D2 D1 D0

Reserved Mode selector Fan selector

The fan selector value in wValue[3:0] is a zero-based fan selector, with a value
in the range of 0 to FAN_CTRLR.bmAttributes[3:0].

The mode selector in wValue[5:4] determines the content of the data payload
sent with the request. Valid values are given in Table 5.

222 of 304 Liam McSherry
 EC1520839

Table 5

SET_FAN_MODE request, valid mode selectors

11b 10b 01b 00b

Reserved Reserved Speed Voltage

The voltage mode selector is only valid if voltage control is specified in the
response to a GET_FAN_ID request for the specified fan. The data payload of the
request is in the format specified in section D3.1.

The speed selector is only valid if speed control is specified in the response to a
GET_FAN_ID request for the specified fan. The data payload of the request is in
the format specified in section D3.2.

A fan controller must respond with a request error if:

■ The fan specified in wValue does not exist.

■ The mode selector is not valid, either by virtue of the attributes for the fan
or because it is reserved or unspecified.

■ The data payload for the request is not in a valid format.

A fan controller must store and retain (including over power cycles), for each fan,
the latest mode and mode data specified through this request. This retained data
should be used as the initial state of the controller after power-on, but a fan
controller may provide means (such as by a jumper or switch) of selecting another
initial state.

D2.4.3 GET_FAN_MODE (bRequest = 2)
This request retrieves the current mode and mode data for a fan connected to the
controller.

The value in wValue[3:0] is a zero-based fan selector, with a value in the range
of 0 to FAN_CTRLR.bmAttributes[3:0]. The remainder of wValue is reserved
and must be reset to zero.

The data returned by the request is a byte followed by the mode data equivalent
to that provided to the SET_FAN_MODE request. The two least-significant bits of
the first byte are a mode selector (see Table 5), and the 6 most-significant bits are
reserved and must be reset to zero.

A fan controller must respond with a request error if the fan specified in wValue
does not exist.

Liam McSherry 223 of 304
EC1520839

D3 Mode data format

The voltage- and speed-controlled modes are specified as points on a curve or
line which maps temperature to a voltage or speed. A similar, but not identical,
format is used for each control mode.

Where the temperature is between two points, a fan controller should use the
value specified for the lowest-temperature point of the two. A fan controller may
implement a tolerance for points based on the accuracy and precision of its
temperature sensor—for example, given a sensor with ±0.5 ºC accuracy and a
point set at 40 ºC, a fan controller may consider any temperature from 39.5–
40.5 ºC to be on the 40 ºC point.

D3.1 Voltage control mode format
This format is a sequence of two-byte entries, each as in Table 6.

Table 6

Voltage control mode entry format

D15 D14 D13 D12 D11 D10 D9 D8

Voltage level

D7 D6 D5 D4 D3 D2 D1 D0

Temperature END

The END field indicates whether this entry is the last in the sequence when set.
If this bit is not set, a host must provide a further entry. A host should not include
additional data after the last entry.

The temperature field is an unsigned integer, the value of which is a temperature
in the range 0–127 ºC.

The voltage level represents a voltage in the range 0–12 V, in ¹⁄₂₅₅ V increments.
A fan controller must stop the fan if the value specified is less than the starting
voltage given in GET_FAN_ID.bmAttributes[6:2].

224 of 304 Liam McSherry
 EC1520839

D3.2 Speed control mode format
This format is a sequence of variable-length, two- or three-byte entries, each in
the format given in Table 7.

Table 7

Speed control mode entry format

D23 D22 D21 D20 D19 D18 D17 D16

Speed (B)

D15 D14 D13 D12 D11 D10 D9 D8

Speed (A) TYPE

D7 D6 D5 D4 D3 D2 D1 D0

Temperature END

The END field indicates whether this entry is the last in the sequence when set.
If this bit is not set, a host must provide a further entry. A host should not include
additional data after the last entry.

The temperature field is an unsigned integer, the value of which is a temperature
in the range 0–127 ºC.

The TYPE field indicates the length of the entry and how to interpret the speed
fields. If the TYPE field is set, the entry is three bytes long and the Speed (A) and
the Speed (B) field form a 15-bit unsigned integer giving the desired fan speed in
revolutions per minute (rpm). The Speed (A) field is the less-significant field. The
specified speed must not exceed the maximum rpm value given in the response
to GET_FAN_ID for the fan.

If the TYPE field is unset, the entry is two bytes long and the Speed (A) field is an
unsigned integer giving a fan speed in the range 0–100%. A fan controller must
consider values in the range 101–127 invalid.

Note: The more complex option has been assigned TYPE = 1 to simplify the
process of reading entries in software. The Speed (A) field can be read
unconditionally into a 16-bit unsigned integer, with the Speed (B) field
conditionally loaded into the same unsigned integer. Only the loading
of Speed (B) need be inside a conditional (e.g. if) statement.

If the specified speed is 0 rpm or 0%, a fan controller must stop the fan. If the
specified speed—whether in rpm or a percentage—is equivalent to a speed less
than that given in the minimum speed field in the GET_FAN_ID response for the
fan, a fan controller should operate the fan at its specified minimum speed.

Liam McSherry
EC1520839

225 of 304

Appendix E
Summary of expenditure

226 of 304 Liam McSherry
 EC1520839

This appendix gives an exhaustive list of all spending made in pursuance of the
objectives and requirements. Spending in currencies other than pound sterling
has been, where possible, converted at the conversion rate available on the day
of the spend.

13th November 2017

Description Spend

Proof-of-concept prototype circuit: manufacture, assembly, and
postage; associated bank processing fees.

 £ 83.05

Subtotal £ 83.05
Running total £ 83.05

28th November 2017

Description Spend

Fractal Design Silent Series R3 (1600 rpm, 3-pin, 0.06 A) £ 5.28

Corsair Air Series SP120 PWM (2350 rpm, 4-pin, 0.25 A) ×2 £ 12.24

Subtotal £ 17.52
Running total £ 100.57

21st December 2017

Description Spend

Proof-of-concept prototype circuit: VAT, customs duty, delivery
service processing fees.

£ 32.97

Subtotal £ 32.97
Running total £ 133.54

9th April 2018

Description Spend

Report: printing and binding, three copies. £ 75.00

Report: postage. £ 6.50

Subtotal £ 81.50
Running total £ 215.04

Liam McSherry
EC1520839

227 of 304

Appendix F
Proof-of-concept prototype

F1 Bill of Materials . 228

F2 Schematic Diagrams . 229

F3 Circuit Designs . 233

F4 Photographs . 235

F5 Firmware Design . 239

F6 Test Plan . 248

F7 Test Results . 253

Liam McSherry 228 of 304
EC1520839

F1 Bill of Materials

The Bill of Materials for the proof-of-concept prototype is as follows. Parts with
an asterisk mark (*) are generic parts stocked by the manufacturer, MacroFab.

The manufacturer’s pricing was in US dollars, and so this Bill of Materials includes
prices in US dollars rather than pound sterling.

Designators Part No. Price (×1) Price (all)

C1, C2, C4, C5 *MF-CAP-0603-0.1uF $ 0.050 $ 0.200

C3 Taiyo Yuden UMK316AB7475KL-T $ 0.295 $ 0.295

D1 ComChip CDBA540-HF $ 0.543 $ 0.543

IC1 TI CD74HC4050M96 $ 1.010 $ 1.010

IC2 NXP PCT2075TP,147 $ 0.802 $ 0.802

IC3, IC4 TI INA180A2IDBVT $ 0.673 $1.346

JP1 Sullins SFH11-PBPC-D10-RA-BK $ 1.652 $ 1.652

JP2 Altech MBES-152 $ 0.260 $ 0.260

JP3, JP4 Molex 47053-1000 $ 0.519 $ 1.038

L1 Bourns PM2120-471K-RC $ 2.832 $ 2.832

M1, M2, M3, M4 Fairchild FDMS7682 $ 0.496 $ 1.982

R1, R2, R9, R13 *MF-RES-0805-4.7K $ 0.050 $ 0.200

R3, R10 Vishay CRCW080538K3FKEB $ 0.118 $ 0.236

R4 Vishay CRCW12101K10FKEAHP $ 0.118 $ 0.118

R5, R11 *MF-RES-0805-10K $ 0.050 $ 0.100

R6, R12 Vishay WSLP0805R0100FEA $ 0.625 $ 1.250

R7, R8, R14, R15 *MF-RES-0805-470 $ 0.050 $ 0.200

Z1 NXP TDZ12J,115 $ 0.437 $ 0.437

The tabulated parts cost is $14.501, plus the cost of manufacturing the printed
circuit board—quoted at $31.41 by the manufacturer—giving a subtotal of $45.911.

There was an additional $9.91 charge for use of parts that the manufacturer did
not stock, and a labour cost of $18.05, bringing the total cost to $73.87. On the day
of payment, this was equivalent to a cost of £56.33.

Liam McSherry 229 of 304
EC1520839

F2 Schematic Diagrams

The schematic diagrams produced for the proof-of-concept prototype are given
in the following pages. The diagrams were produced using Autodesk EAGLE.

Sheet 1 of the diagrams (“board-to-external main conns.”) shows the connections
from the proof-of-concept prototype circuit to external circuits, and relevant
components which were considered to be most appropriately located in the same
sheet as the external connections. The part marked JP1 is a 20-pin (10×2 rows)
female header which mates with the 20-pin male header on the development kit
identified as the expansion header (not to be confused with the debug connector).
The part marked JP2 is a 2-pin screw terminal, to be used to connect a 12 V power
supply to the prototype.

Sheet 2 of the diagrams (“fan conn. 1 (PWM DAC)”) shows the PWM DAC with its
associated fan connection and the instrumentation to be used to monitor that fan
connection.

Sheet 3 of the diagrams (“fan conn. 2 (bare)”) shows the fan connection with little
more circuitry than is required to operate 4-pin varieties of fan. Inclusions other
than that are the same instrumentation as is shown on sheet 2, and a further
transistor for modulating the supply to the fan.

Liam McSherry 230 of 304
EC1520839

Liam McSherry 231 of 304
EC1520839

Liam McSherry 232 of 304
EC1520839

Liam McSherry 233 of 304
EC1520839

F3 Circuit Designs

The circuit design produced for the proof-of-concept prototype is given on the
following page. The design was produced using Autodesk EAGLE.

The design is for a two-layer circuit board, approximately 5×3 inches. The bottom
layer is largely used as a ground plane and has minimal routing. The top layer is
used for the majority of the routing, and has a mix of ground and +3.3 V supply
planes, as well as bare areas without copper pours. In the design shown, dotted
lines indicate the boundaries of copper pours.

Areas and dotted lines in red represent copper on the top layer. Areas and dotted
lines in blue represent copper on the bottom layer. Green is used to represent a
plated through-hole, with the green area being the copper pad. Grey is used for
any documentation, and may or may not be present on the printed board.

Liam McSherry 234 of 304
EC1520839

Liam McSherry 235 of 304
EC1520839

F4 Photographs

Face, front view of the proof-of-concept prototype.

Reverse, front view of the proof-of-concept prototype.

Liam McSherry 236 of 304
EC1520839

Face, side view of the proof-of-concept prototype, showing the
PWM DAC, screw terminal, development kit connector, and level shifter.

Liam McSherry 237 of 304
EC1520839

The development kit, with USB debugger (top left), LCD (top centre), ARM Cortex-M
controller (centre), USB connector (bottom centre), and expansion header (right).

The test setup for the proof-of-concept prototype on the 12th of January 2018.

Liam McSherry 238 of 304
EC1520839

The test setup for the proof-of-concept prototype on the 1st of February 2018.

Liam McSherry 239 of 304
EC1520839

F5 Firmware Design

F5.1 Initial flowcharts
The initial flowcharts produced to give a high-level outline of the firmware are
given on the following pages. The flowcharts were produced using Dia.

Summary: first page

The first page shows the general design of the entry point and the master timer
interrupt service routine portions of the firmware. The entry point performs the
initial setup of the microcontroller, the general configuration for all required
hardware peripherals (such as pulse-width modulation generators, timers, pulse
counters, I²C communication, and analogue-to-digital converters) and enables
the master timer interrupt before halting and waiting for interrupts.

The master timer is a periodic timer used to periodically make measurements. It
is expected that the timer will be set to a 10 ms interval—sufficiently fast to
continuously average voltage and current values, the intention of which is to
reduce the effects of voltage transients in the lines connecting the transducer to
the microcontroller.

Additionally, the master timer would be used to time the one-second interval
between reading the number of tachometer pulses counted—likely implemented
through a software counter (counting through 1000 ms / 10 ms = 100 values) that
is incremented on each master timer interrupt, the one-second interval allows a
sufficient number of pulses to be recorded for relatively accurate measurement
of fan speed. In one second, a 500 rpm fan would complete 8⅓ revolutions, which
would result in approximately 16 or 17 pulses being recorded (given that there are
two pulses produced per revolution). Multiplying this pulse count by 60×¹⁄₂ to
approximate a per-minute number of revolutions gives 480, which is not hugely
different from the 500 rpm nominal speed.

Summary: second page

The second page shows the “primary” and “secondary mode change switch
actuation interrupts,” which are the interrupts produced when a primary and a
secondary switch are actuated. The primary switch is used to rotate between the
available modes, and the secondary switch between duty cycles in each mode. A
switch between modes would largely consist of reconfiguring the microcontroller
PWM peripherals to disable whichever peripheral was outputting on actuation
and enable whichever is required to output for the next mode in sequence.

Liam McSherry 240 of 304
EC1520839

Liam McSherry 241 of 304
EC1520839

Liam McSherry 242 of 304
EC1520839

F5.2 Specific considerations: fan speed measurement
The microcontroller on the development kit has three pulse counters—1×16-bit
and 2×8-bit. In order to ensure that fan speed measurement through the counters
works sensibly and consistently, any decisions taken must consider only the
capabilities of the 8-bit counters, and not those of the 16-bit counter.

Measurable fan speeds

For the simplest solution—a periodic check of a counter’s value—the greatest
impact on measuring ability is from the choice of counting period. This period
varies upper limit, depending also on the maximum counter value, of measurable
fan speeds. For example, if the counter is an 8-bit counter, with a counting period
T, and considering that a fan produces two pulses per revolution, the maximum
fan speed is (2⁸−1)/2 revs per T seconds. If T is 1, the greatest fan speed which the
system can measure is 7650 rpm.

This maximum measurable speed can be increased by shortening the counting
period, but doing so impacts the minimum measurable fan speed. The speed of a
motor may only be an average speed over time, and so the motor may operate
faster than nominal at one time and slower than nominal at another. The shorter
the counting period, the more likely it is that the period will cover either but not
both of these times, and so the more likely it is that large variations in fan speed
will be recorded. Lengthening the counting period reduces this likelihood at the
cost of decreasing the maximum measurable fan speed. In this simplest solution,
it would be required to select a counting period which was an appropriate trade-
off between maximum and minimum measurable speeds.

However, the pulse counters on the microcontroller include features which make
a more complex system without this trade-off practical. The counters are capable
of generating an interrupt when the maximum is reached, and so by registering
and servicing this interrupt firmware on the microcontroller could count past the
maximum. This would enable the use of a counting period long enough to give a
useful result at low speeds without affecting the measurable maximum in a way
that is significant. To clarify, any further limit would be the result of the storage
of the firmware-based counter—for example, if this count were stored in a 16-bit
variable, it would be “limited” to (2¹⁶−1)/2 revs per T seconds. If T is 1, then this
places the limit at nearly 2 million rpm.

Low-speed measurement accuracy

Depending on the operation of the pulse counter, it is not inconceivable that an
additional pulse could be registered. This is illustrated in the below diagram.

If the counting period is the shaded area, it can be seen that there are four full
pulses, but five periods where the signal is high. If the pulse counter were level-
sensitive, the partially-shaded pulse might register as two pulses. At particularly

Liam McSherry 243 of 304
EC1520839

low fan speeds, this could greatly affect the accuracy of the measured fan speed.

For example, if a 600 rpm fan were operated at 180 rpm (or 30% full speed1), it
would nominally produce 2×180 = 360 pulses per minute. However, the speed of
a fan is permitted to vary by ±10% of full speed from the speed specified by the
control signal, and so the fan could instead be operating at 120 rpm and producing
pulses at a rate of 240 per minute. In a counting period of one second, the fan
would then nominally produce four pulses. However, if a fifth is registered, the
fan would appear to be operating at 150 rpm instead of 120 rpm—an error of 25%
the true speed. At full fan speed, a single additional pulse has less of an effect—a
further pulse would continue to increase the measurement by 30 rpm, but this
might only represent 5% of the 600 rpm true speed.

The pulse counters on the microcontrollers provide some features which negate
these issues. The counters can be configured to trigger on either the rising or the
falling edge, and can be configured to require a certain “hold time” (that is, a time
for the duration of which the signal must remain in the high state to be registered)
to register a pulse. By configuring the counters to trigger on the positive edge, the
issue of the counting period starting in the middle of a pulse (as illustrated above)
is eliminated. Through the use of the hold time requirement—specifically, a
requirement for a pulse to last for five clock cycles, equivalent to around 0.15 ms
when the counters are driven from the 32.768 kHz clock—pulses generated by
interference can be partially, if not almost entirely, eliminated.

If an improvement in accuracy is necessary, it would be possible to use a rolling
average. While on first thought this may not appear practical—over a number of
seconds, for example, a fan could change speed many times, and so it could be
thought that the accuracy of the average would degrade with time—the controller
determines when the fan speed is to change, and would be able to reset the rolling
average as required. It remains possible for external influences, such as the blades
of the fan becoming obstructed, to change the fan speed, but such events could
be detected by monitoring for sustained and significant changes in the raw fan
speed. This would be somewhat analogous to integral–derivative control.

Basic testing and verification

At first consideration, it would appear that the only possible means of testing fan
speed measurement would be to connect the development kit to appropriate
hardware—either to the proof-of-concept prototype and a fan, or to a signal
generator emulating the tachometer output of a fan. This would be not at all
preferable, as it would prevent testing of the firmware for fan speed measurement
otherwise than during the limited laboratory time.

However, this is not the case. The microcontroller incorporates what is branded
a “peripheral reflex system” (PRS), which connects hardware devices included in
the microcontroller (“peripherals”) and allows the communication of events from
one peripheral to another, enabling the consumer of the event to respond without
intervention from the central processor (hence, “reflex”). Through this system, a
pulse counter can operate as a consumer and so can be configured to count pulses

1 That speed being the greatest permissible value for a PWM-controlled fan’s minimum
controlled speed. That is, where the speed of the fan is specified by a PWM control signal,
the greatest value below which the fan need not respond.

Liam McSherry 244 of 304
EC1520839

generated by other peripherals. In combination with a timer configured to signal
on the PRS when it fires, a periodic tachometer pulse can be emulated internally
within the microcontroller without the requirement for a laboratory or special
equipment and whilst still making use of the pulse counter peripheral (rather than
an abstraction over the peripheral where the behaviour is emulated in firmware).

If testing the pulse counters using the PRS, the counters must be configured to
operate in single external input oversampling mode. In this mode, the counters
are clocked by their input, rather than the LFA clock. When the counters were
instead configured to operate in single-input oversampling mode, which is
synchronised to the LFA clock, pulses were not reliably counted. This is likely an
artefact of the PRS, as pulses on the PRS are one clock cycle long. If not generated
exactly in time with a pulse from LFA, the single pulse would never be registered.
This is not anticipated to be an issue for a connection to a real fan, as tachometer
pulses will be significantly longer.

F5.3 Specific considerations: microcontroller PWM generators
As shown in the schematic diagrams, the proof-of-concept prototype uses both
the microcontroller’s normal timers and the microcontroller’s low-energy timer
to produce the PWM waveforms required. As the configuration for normal and
low-energy timers is different, and as the use of these timers to produce PWM is
not entirely straightforward, this appendix provides additional explanation.

The information provided in this section is available in the reference manual for
the microcontroller, but the manual is not considered especially clear.

Anatomy of the timers

For the purpose of generating a PWM waveform, the normal and low-energy (LE)
timers are conceptually identical—each consists of a counter capable of counting
in either direction (up or down) and interrupting the processor when the count
reaches zero or a setpoint, and each has an associated set of output channels able
to process and act on the count to produce an output signal (which will generally
be output from the microcontroller on one of its pins).

The processing available to the output channels is basic, but important for this
use is that each of the timers supports a toggle-on-match function. That is, when
the count equals a channel-specific value, the channel will toggle the output of
the channel (so that high becomes low and low becomes high). This function is
illustrated below. For simplicity, the compare value is also the value at which the
counter overflows to zero.

Liam McSherry 245 of 304
EC1520839

As it stands above, this function is not particularly useful for producing a PWM
waveform—varying the compare value varies the width of the pulse, but this can
only ever produce fixed-width pulses and so could only ever produce a waveform
with a duty cycle of 50% (or a mark–space ratio of 1:1).

However, with a minor modification, this function can be useful in producing
PWM waveforms. If the output channel, each time the counter overflows (in the
case of an up-counter) or underflows (for a down-counter), is reset to a fixed idle
state, then the compare value can be used to control the period of time the signal
is in the opposite state. Both the normal and LE timers support this method and,
while other methods exist, this method is likely to be one of the simpler options
available (in terms of code complexity) for producing PWM signals. This modified
function is illustrated by the below diagram, and the value labelled “top” is the
value at which the counter overflows to zero.

As can be seen, this minor modification enables the production of a variable-
duty-cycle waveform, an essential requirement for a PWM generator. By also
varying the “top” value for the counter, both the frequency of the wave and the
resolution of duty cycle steps are varied.

At a high level, both the normal and LE timers on the microcontroller operate as
illustrated in the above diagram. More practically, there are not insignificant
differences in operation which require different treatment in any code produced.

Liam McSherry 246 of 304
EC1520839

Normal timers

In the case of the normal timers, there is a high degree of flexibility. Each timer
has three output channels,2 each of which can act when the counter over- or
underflows, or when the counter matches a channel-specific value.

If the timer were to be configured as an up-counter which toggled the input when
the counter was equal to a given value, the output waveform would remain high
until the register TIMERn_CNT became equal to TIMERn_CCx_CCV, at which point
it would transition to low. The waveform would then transition back to the high
state when TIMERn_CNT became equal to TIMERn_TOP and overflowed to zero.

In this case, the PWM frequency is given by the same equation as the timer
frequency would normally otherwise be given—that is, the frequency is equal to
the timer clock divided by the product of the prescaler setting and one more than
the counter’s top value fPWM = fHFPER/[(PRESCALER×(TOP+1)). To attain 100 kHz,
as required for the PWM DAC input, a prescaler value of 1 and a TOP of 139 is
required. While it is possible to attain this frequency with other values, this pair
of values has the advantage that, to attain the 25 kHz control signal used with
standard 4-pin fans, the prescaler can be adjusted from 1 to 4. Other values (such
as a prescaler of 4 and a TOP of 34) would produce the same effect, but would
require that the prescaler be adjusted from 4 to 16, which leaves room for error.
For example, it is not unforeseeable that code written absentmindedly would
adjust the prescaler from 4 to 8 (four more) instead of 4 to 16 (four times more).

Further, as the TOP value determines the resolution of the PWM duty cycle, the
use of a value of 139 provides a resolution of approximately 0.7%, which is far
finer than the approximately 3% provided by a TOP of 34. This enables a user to
set fan speed (where this is determined by PWM) in near-1% increments, which
makes more intuitive sense than adjustment in 3% increments.

Low-energy timers

The LE timers are relatively inflexible. While the LE timers still have two output
channels, and while each of these channels can produce a signal different from
that of the other channel, both channels are driven from a single comparator (in
comparison to the normal timers, which have a comparator for each channel).

Further, the cues for acting and the action taken on those cues is fixed. The timer
begins counting down from the value in the register COMP0. When the count
matches COMP1 and if the repeat counters3 REP0 and REP1 are non-zero, the signal
becomes high. When the counter underflows (irrespective of the value of the
repeat counters), the signal is reset to a configurable idle value.

The LE timer, being a low-energy peripheral, would normally be clocked by the
Low-Frequency RC Oscillator (LFRCO) through the LFA clock. However, as the
LFRCO operates at 32.768 kHz, this is not possible—the 21–28 kHz accepted by
a standard 4-pin fan as a PWM control signal cannot be produced using dividers

2 In reality, the “output channels” for the normal timers are actually “capture/compare
channels,” and provide functionality both for generating output from and processing input
to the timer. The precise input functionality is outside the scope of this note.
3 The repeat counters REP0 and REP1 are used in other timer modes to, for example,
produce a pulse or signal a specified number of times.

Liam McSherry 247 of 304
EC1520839

and prescalers present on the microcontroller. Instead, the LFA clock must use
the 7 MHz HFCORECLKLE.4 In that configuration, the required 25 kHz can be
produced by configuring the LE timer’s prescaler to divide the clock by 2 and by
setting COMP0 to 139 (i.e. having the timer count down from 140). As the LE timer
is only used to provide a PWM control signal to the fan (and not to modulate the
supply or control the PWM DAC), it is not necessary to configure the timer to
produce a PWM signal with a frequency of 100 kHz.

4 Note that, while HFCORECLKLE is specified here as 7 MHz, its frequency is derived from
the HFCORE clock which is generally derived from the HFRCO. Its frequency is half or
one quarter that of the clock from which it is derived.

Liam McSherry 248 of 304
EC1520839

F6 Test Plan

F6.1 General considerations
The overall objective in producing the proof-of-concept prototype circuit is both
to enable the testing the firmware and software elements, and to ensure that the
methods of control selected function safely and as intended.

As it is uncertain whether the PWM DAC-based control circuit will function as
desired, and considering that there is the potential for the mis-operation of a fast-
switching inductor to produce large voltages, any test involving the PWM DAC
and the development kit should be performed after other tests. This will ensure
that, if the PWM DAC causes damage to equipment, some usable data will have
been collected. In addition, where any test involves the PWM DAC circuit but not
the development kit, it would be advisable to use the Corsair Air Series SP120
PWM fan—two of this type of fan were purchased, and so the loss of one of those
fans would not reduce the variety of fans available for testing.

F6.2 Equipment listing
The following equipment is to be used in the testing of the proof-of-concept
prototype circuit. Supplies and instrumentation are not listed.

Designator Description

Dev. Kit Silicon Labs EFM32WG-STK3800 development kit.

— Proof-of-concept prototype circuit.

Fan 1A
Fan 1B

Corsair Air Series SP120 PWM fan.

Fan 2 Fractal Design Silent Series R3 fan.

JP1 Proof-of-concept prototype circuit, component JP1.

EFM32WG-STK3800 expansion header.

JP2 Proof-of-concept prototype circuit, component JP2.

Additional power supply screw terminal.

JP3 Proof-of-concept prototype circuit, component JP3.

PWM DAC fan connector.

JP4 Proof-of-concept prototype circuit, component JP4.

Bare fan connector.

TP1 Proof-of-concept prototype circuit, test point 1.

Tachometer 1, pre-level shift.

TP2 Proof-of-concept prototype circuit, test point 2.

Tachometer 2, pre-level shift.

TP4 Proof-of-concept prototype circuit, test point 4.

PWM DAC output voltage.

TP5 Proof-of-concept prototype circuit, test point 5.

PWM DAC fan connection, current transducer output.

Liam McSherry 249 of 304
EC1520839

Designator Description

TP6 Proof-of-concept prototype circuit, test point 6.

Bare fan connection, current transducer output.

TP7 Proof-of-concept prototype circuit, test point 7.

Additional power supply, 12 V line.

USB 1 Silicon Labs EFM32WG-STK3800, interface USB port.

Board controller interface USB Mini-B (left edge).

USB 2 Silicon Labs EFM32WG-STK3800, EFM32 USB port.

Microcontroller USB Micro-AB (bottom edge).

Where a voltage is given, that voltage is referenced to ground unless otherwise
specified.

F6.3 Action items

1 Basic verification: bare fan connection

A. Connect a 12 V supply to JP2.
B. Connect Fan 1A to JP4.
C. Connect a 3.3 V supply to JP1 pins 1 and 19 (GND), 17 and 20 (+3V3).
D. Observe that Fan 1A starts and continues to rotate.
E. Observe at TP6 that the voltage does not exceed approximately 0.1 V

after allowing at least 1 second to expire from the completion of step C.
F. Observe at TP2 that the voltage does not exceed 12.6 V.
G. Observe at JP1 pin 10 that the voltage does not exceed approx. 2.6 V.

2 Basic verification: PWM DAC fan connection

A. Connect a 12 V supply to JP2.
B. Connect Fan 1A to JP3.
C. Connect a 3.3 V supply to JP1 pins 1 and 19 (GND), 3 and 20 (+3V3).
D. Observe that Fan 1A starts and continues to rotate.
E. Observe at TP5 that the voltage does not exceed approximately 0.1 V

after allowing at least 1 second to expire from the completion of step C.
F. Observe at TP1, TP4, and TP 7 that the voltage does not exceed 12.6 V.
G. Observe at JP1 pin 6 that the voltage does not exceed approx. 2.6 V.

3 Basic verification: MCU PWM DAC control mode

A. Set the Dev. Kit power source select switch to “DBG.”
B. Connect through USB 1 the Dev. Kit to a computer.
C. Configure the Dev. Kit to operate in the first mode in the program

specification (see section 14.4.1).
D. Operate the Dev. Kit in this first mode with all duty cycle variants and

make the following observations.
E. Observe at the Dev. Kit expansion header pin 3 (PC0 / TIMER0_CC1)

that a PWM waveform, approx. 100 kHz, correct duty cycle is present.
F. Observe at the Dev. Kit expansion header pin 11 (PB11 / LETIM0_OUT1)

that no voltage is present.

Liam McSherry 250 of 304
EC1520839

4 Basic verification: MCU modulated supply control mode

A. Set the Dev. Kit power source select switch to “DBG.”
B. Connect through USB 1 the Dev. Kit to a computer.
C. Configure the Dev. Kit to operate in the second mode in the program

specification (see section 14.4.2).
D. Operate the Dev. Kit in this second mode with all duty cycle variants

and make the following observations.
E. Observe at the Dev. Kit expansion header pin 17 (PD7 / TIMER1_CC1)

that a PWM waveform, approx. 100 kHz, correct duty cycle is present.
F. Observe at the Dev. Kit expansion header pin 13 (PB12 / TIMER1_CC2)

that no voltage is present.

5 Basic verification: MCU PWM control signal control mode

A. Set the Dev. Kit power source select switch to “DBG.”
B. Connect through USB 1 the Dev. Kit to a computer.
C. Configure the Dev. Kit to operate in the third mode in the program

specification (see section 14.4.3).
D. Operate the Dev. Kit in this third mode with all duty cycle variants and

make the following observations.
E. Observe at the Dev. Kit expansion header pin 13 (PB12 / TIMER1_CC2)

that a PWM waveform, 21–28 kHz, correct duty cycle is present.
F. Observe at the Dev. Kit expansion header pin 17 (PD7 / TIMER1_CC1)

that a constant voltage, approx. 3.3 V, is present.

6 Basic verification: MCU pulse counting

A. Set the Dev. Kit power source select switch to “DBG.”
B. Connect through USB 1 the Dev. Kit to a computer.
C. Connect a signal generator to the Dev. Kit expansion header pins 1 and

19 (GND) and 4 (PD0 / PCNT2_S0 / +3V3).
D. Configure the Dev. Kit to operate in the third mode in the program

specification (see section 14.4.3).
E. Configure the signal generator to output a square wave of frequency

approximately 78.33 Hz, duty cycle 50%.
F. Observe on the Dev. Kit LCD that the displayed fan speed is 2350 rpm.

7 Experimentation: Hall effect sensor PWM response

A. Connect a 12 V supply to JP2.
B. Connect Fan 1A to JP4.
C. Connect a signal generator to JP1 pins 1 and 19 (GND) and 17 (+3V3).
D. Configure the signal generator to output a square wave of frequency

25 kHz, fixed duty cycle.
E. Observe at TP2 the resultant waveform.

8 Further verification: PWM DAC operation

A. Connect a 12 V supply to JP2.
B. Connect a 3.3 V supply to JP1 pins 1 and 19 (GND), 20 (+3V3).
C. Connect a signal generator to JP1 pin 3 (TIMER0_CC1) and ground.
D. Configure the signal generator to output a square wave of frequency

100 kHz.
E. Vary the duty cycle across an appropriately wide range of values.

Liam McSherry 251 of 304
EC1520839

F. Observe that the resultant voltage at JP3 for each duty cycle value is or
is nearly equal to the supply voltage multiplied by the duty cycle.

9 Further verification: Modulated supply tachometer output

A. Connect a 12 V supply to JP2.
B. Connect a 3.3 V supply to JP1 pins 1 and 19 (GND), 20 (+3V3).
C. Connect a signal generator to JP1 pin 17 (TIMER1_CC1) and ground.
D. Connect Fan 1A to JP4.
E. Configure the signal generator to produce a square wave of frequency

25 kHz and with fixed duty cycle.
F. Observe at JP1 pin 4 (PCNT2_S0) that the voltage does not exceed the

voltage of the 3.3 V supply.
G. Observe at JP1 pin 4 (PCNT2_S0) that the waveform is equivalent to the

waveform which can be observed at TP2.

10 Further verification: fan speed control

A. Modify the third mode in the program specification (see section 14.4.3)
to include at least four duty cycle variants.

B. Connect a 12 V supply to JP2.
C. Connect a 3.3 V supply to JP1 pins 1 and 19 (GND), 17 and 20 (+3V3).
D. Connect Fan 1A to JP4.
E. Set the Dev. Kit power source select switch to “DBG.”
F. Connect through USB 1 the Dev. Kit to a computer.
G. Configure the Dev. Kit to operate in the third mode (see step A).
H. Connect Dev. Kit expansion header pin 13 (PB12 / LETIM0_OUT1) to

JP1 pin 11 (+3V3 / TIMER1_CC2).
I. Cycle through duty cycle variants, performing steps J and K each time.
J. Observe at PB12 that the duty cycle of the waveform is as expected.
K. Observe at TP2 that the frequency of pulses is as expected.

F6.4 Action items: notes
Action items 1 and 2 verify the most basic functionality of the prototype—that a
fan can be energised and can start correctly when connected to the prototype.

Action items 3, 4, and 5 verify that the microcontroller operates as intended in
the various specified control modes without requiring the development kit be
connected to the proof-of-concept prototype circuit.

Action item 6 verifies that the microcontroller correctly and accurately measures
fan speed. The fan tachometer produces two pulses per rotation, and so the
frequency of approximately 78.33 Hz (~4700 rpm) should be read as 2350 rpm.

Action item 7 determines the effect of a PWM-modulated supply voltage on the
output of the Hall effect sensor contained within the fan. A core driver in the
inclusion of the PWM DAC was that the effect of PWM on the output of the Hall
effect sensor was unknown and so could not be relied upon. The results of this
experiment could significantly impact the decisions made in the producing of any
final design.

Action item 8 verifies that the PWM DAC operates correctly—that is, that the
voltage across its output is correct. Action item 2 verified only that the PWM
DAC could energise a fan, and so could be completed irrespective of whether the

Liam McSherry 252 of 304
EC1520839

operation of the PWM DAC was correct (provided that the output voltage was at
least the starting voltage of the fan).

Action item 9 verifies correct tachometer output, after its level shifting—that is,
that the output signal is firstly transmitted through the shifter, is secondly of the
appropriate level for provision to the development kit, and is thirdly free of noise
which could be misinterpreted as a tachometer pulse.

Action item 10 verifies that the fan responds as expected to the PWM output the
microcontroller produces.

Liam McSherry 253 of 304
EC1520839

F7 Test Results

F7.1 Basic verification: bare fan connection

12th January 2018

The proof-of-concept prototype was connected to a 12 V supply and a 3 V (rather
than 3.3 V) supply, and Fan 1A was connected at JP4 (the bare fan connection), in
the manner specified in action item 1.

Additional equipment used included a Fluke 115 digital multimeter, a Tektronix
TBS 1042 oscilloscope, an Aim-TTi TG330 function generator, two Philip Harris
0–25 V college power units, and all the necessary cabling and probes. This
equipment is shown in a photograph dated the 12th of January in Appendix F4.

The supplies were energised, but the fan was not observed to start as predicted
in action item 1D. The supplies were de-energised and, in order to troubleshoot
the issue, Fan 1A was disconnected from the prototype. Fan 1A was connected
directly to the 12 V supply and was observed to start and run, and so it could be
ruled out that Fan 1A was at fault.

It was suspected that MOSFET M3 was non-functional. In order to confirm this,
continuity tests were performed. The first continuity test, between the fan
connector 12 V pin and TP7, was positive—this was the expected result, as the
12 V line is not routed through the MOSFET. The second continuity test, between
the fan connector ground pin and TP3 with 3 V supplied to the gate of the
MOSFET, was negative—there was no continuity between the fan ground and the
prototype ground. The MOSFET switches the ground connection, and so
continuity between fan and prototype ground was expected when the MOSFET
was in conduction.

This was taken as further evidence indicating a non-functional MOSFET, as the
FDMS7682 is rated for a typical gate–source threshold VGS(th) of 1.9 V, with a rated
maximum of 3 V. In order to confirm this, the MOSFET gate resistor R14 was
probed during energisation to determine whether any current was flowing to the
gate of the MOSFET. If current flow is present, the MOSFET could be taken as
functional. This current flow would result in a voltage drop across R14, which
could be measured during energisation as the MOSFET gate charged. With the
probes in place, and with a reduced voltage of 2 V supplied to the MOSFET gate,
Fan 1A was observed to start and continue to rotate on energisation. Further,
when the circuit was energised without the probes in place, Fan 1A was observed
to start and continue to rotate once the probes were placed across R14.

It was not determined whether the fan would continue to rotate once the probes
were removed (having been put in place to start the fan). Initially, this was taken
to be the case, as no discernible change in fan speed was observed immediately
after the removal of the probes. However, when the MOSFET gate was de-
energised, the fan continued to rotate for more than 30 seconds before coming to
a halt. It may have been the case that this effect occurred after the removal of the
probes, but too short a time elapsed between probe removal and the de-
energising of the MOSFET gate to be able to confirm this. The MOSFET was not
energised again after the two aforementioned tests which probed R14, as it was
feared that a risk of irreversible damage to the MOSFET was present.

Liam McSherry 254 of 304
EC1520839

The cause of the effect where the fan continued to rotate for a considerable
length of time after the apparent de-energising of the MOSFET gate is not known.
It was considered that it is possible for the PWM DAC inductor to feed back into
the circuit via its flyback diode—which would be the only complete conduction
path for the inductor when no fan is connected—but, even if this were the case,
the connection between the 12 V rail and ground (via a fan) is controlled by the
MOSFET, and so no complete circuit could be formed without conduction
through the MOSFET. However, if the MOSFET were subjected to conditions
which would cause it to conduct without a gate current, it is expected that the
MOSFET would be destroyed.

If the MOSFET were destroyed and failed closed, there would exist a continual
connection to ground, and so the fan would be expected to start irrespective of a
gate voltage being applied. This was not the case. If the MOSFET failed open, it
would result in a permanent disconnection from ground (barring any extremely
high voltage), and so the fan would be expected to never start. Again, this was not
the case. The fan would start when R14 was probed, and so the MOSFET must be
capable of some form of controlled operation.

One potential explanation is that the voltage at the MOSFET drain—possibly as a
result of backfeeding from the PWM DAC inductor—was sufficient to cause the
body diode the MOSFET incorporates to begin conducting. If this were the case,
a complete circuit to ground could be formed without driving the gate of the
MOSFET. The simplest method of determining whether this is the case would
likely be to measure the voltage at the drain throughout the operation of the
MOSFET, with particular attention paid when the MOSFET begins to conduct
(i.e. while and after probing R14) and when the gate signal is removed.

Additional measuring points include TP4 (PWM DAC output), TP7 (additional
power supply screw terminal 12 V), and the solder joints between resistors R10
and R11 (3.83:1 potential divider on the bare fan connection 12 V line). Each of
these points enables measurement of the 12 V line on the prototype.

Before performing this test, it is necessary to determine why the MOSFET began
to conduct when R14 was probed and whether doing so is likely to damage the
MOSFET or other circuit components. As a possible start, the resistance of R14
could be measured to determine if R14 is faulty. If R14 is shown to be faulty, the
connection of the multimeter across it may have provided a high-impedance but
still sufficient path for current to flow to the MOSFET gate, which would not need
relatively large currents to switch (as might be required for the operation of a BJT
device). Further research is therefore required.

18th January 2018

A Maplin UZ82D simple analogue multimeter was temporarily acquired in order
to perform basic confirmatory tests before the 19th of January, when further and
more advanced testing could be performed in an electrical workshop.

A number of resistance measurements were taken to verify expected continuity
and expected discontinuity. The results of these measurements are given in the
following table.

Liam McSherry 255 of 304
EC1520839

Probe 1 Probe 2 Resistance

M3 (Source) TP3 0 R

TP7 40 K

M3 (Drain) JP4 (GND) 0 R

JP4 (12 V) ∞

M3 (Gate) TP3 ∞

TP7 JP4 (12 V) 0 R

For clarity, in this table JP4 refers to the bare fan connection with that reference
designator, and M3 refers to the MOSFET with that reference designator (which
is connected at its drain to the GND pin on JP4 and at its source to circuit ground).
JP1 is the 20-pin expansion header with that reference designator.

TP3 is the screw terminal (JP2) ground test point, TP4 is the PWM DAC 12 V test
point, and TP7 the screw terminal 12 V test point. No other test points were used.

In all cases, these results verify what was anticipated. Although the measurement
of 40 kiloohm may at first appear incorrect, it must be remembered that there is
a potential divider permanently connected between 12 V and ground (formed by
the resistors R10 and R11). Although the aggregate resistance of that potential
divider is nominally 48.3 kiloohm, the distance on the multimeter scale between
a reading of 40 and a reading of 50 kiloohms is on the order of millimetres.

Two further measurements between the source of M3 and the gate resistor R14
were taken to confirm gate signal continuity: between the source and the land
pattern pad which should be directly connected (by a trace) to the source, and
between the source and the land pattern pad connected to the source via the gate
resistor R14. In the first test, the expected resistance of 0 ohms was observed. In
the second test, an infinite resistance was observed. To further confirm, a reading
of the resistance between those two pads was taken, and observed as infinite. To
confirm correct technique, the resistance of R15 (the ostensibly identical resistor
on the gate of MOSFET M4) was taken and observed to be approximately 500
ohms—a reasonable deviation from the expected 470 ohms, given that the meter
in use is analogue.

This preliminarily confirms the suspicion that resistor R14 is non-functional and
the theory that the multimeter provided a sufficient path to the gate to enable the
switching on of the MOSFET. For full confirmation, these tests will be repeated
on the 19th with a more accurate digital multimeter.

If R14 is fully confirmed to be non-functional, it may be necessary to attempt its
replacement. However, whether an equivalently-rated and sized resistor is
available on short notice is not known.

The resistances of R7 (PWM DAC driver MOSFET gate resistor), R8 (PWM DAC
fan PWM control signal MOSFET), and R15 (bare fan connection fan PWM
control signal MOSFET) were observed as approximately 500 ohms, and so the
testing of these portions of the circuit is likely to be possible.

Liam McSherry 256 of 304
EC1520839

19th January 2018

The measurements taken on the 18th of January were repeated, using a more
accurate digital multimeter instead of an analogue meter. The results are shown
in the below table.

Probe 1 Probe 2 Resistance

M3 (Source) TP3 0.1 R

TP7 36.4 K

M3 (Drain) JP4 (GND) 0.1 R

JP4 (12 V) 23 M

M3 (Gate) TP3 ∞

TP7 JP4 (12 V) 0.2 R

A resistance of 0.1 ohms was reported when the probes were shorted together,
and so values of 0.1 or 0.2 ohms are likely to be lower than reported.

Further measurements between the gate of M3 and the top pad of R14, and
between the gate of M3 and the bottom pad of R14, were taken. As anticipated,
for the first of those measurements a resistance of 0.1 ohms was reported. When
the second measurement was taken, however, the reading was inconsistent—the
multimeter alternated between an infinite resistance and around 472 ohms (the
expected resistance). This would indicate, contrary to what measurements taken
on the 18th appeared to reveal, that the resistor was functioning.

As the gate resistor was then most likely functional, the inconsistent reading was
taken to indicate a poor connection between the resistor and its pads (e.g. as a
result of poor solder joint formation). Although visual inspection did not reveal
any obvious defects, the use of significant pressure when probing R14 did give a
consistent reading. This was interpreted as the added pressure causing contact to
be made where, in the absence of pressure, it would not otherwise be made. As
final confirmation, considering that poor solder joint formation is unlikely given
the assembly was performed by a professional service and likely involved the use
of a reflow oven, a resistance measurement between the gate and a via after R14
was performed, and gave a consistent reading of 472 ohms. This consistent value
indicated that a poor solder joint was unlikely—if the joint was poor and causing
inconsistent measurement, a measurement would be inconsistent irrespective of
whether it was performed at the resistor or at a connected location. Although the
precise cause of the inconsistency in measurement is not known, it may be the
case that a non-conducting layer of solder flux residue prevented measurement,
and any added pressure scraped away part of that layer.

In performing this final confirmation, because it was suspected that solder joints
may be the issue, a number of other components were probed. In particular, the
ground on pin 1 of the 20-pin expansion header was probed with the resistance
between it and TP3 measured. This resistance—which should have been around
zero ohms—was measured as being infinite, apparently indicating an issue. In the
course of taking this measurement, however, one of the probes was accidentally
moved into contact with pin 2 instead of pin 1, where—with the other probe still
in contact with TP3—a resistance of less than an ohm was measured. Clearly, this

Liam McSherry 257 of 304
EC1520839

indicated a problem—on the schematic in Appendix F2, pin 2 on the expansion
header is floating, unconnected to any portion of the circuit. A visual inspection
of the expansion header solder joints was performed to determine whether any
immediately obvious defect existed. Below is a photograph of those joints.

It can be seen that, while no obvious solder joint defects are present, there is an
irregularity—while figure 9.1 in the development kit user’s manual shows that the
pins at either end on the bottom row are ground connections, it can clearly be
seen that the pins at either end on the top row are connected to the ground plane.
For the avoidance of doubt, “top” and “bottom rows” here mean the rows on the
expansion header face, and not the board connections. The position of the board
connections is reversed relative to the expansion header face—the bottom row
of connections in this photograph corresponds to the top row of connections on
the face of the expansion header.

For the further avoidance of doubt, this means that the bottom row is connected
to where the top row should be, and the top row to where the bottom row should
be. It is not clear how this occurred—the most likely explanation is that diagrams
illustrating connection were misinterpreted. For example, figure 9.2 in the user’s
manual, if it were taken as a view facing towards the expansion header, could be
interpreted as indicating that the ground pins were on the top row and not the
bottom. Further, the numbering included with the expansion header footprint on
the circuit board layout (see Appendix F3) could reasonably be interpreted as the
pin numbers of the top or the bottom row depending on whether the numbers
were taken to be the numbers of the pins visible from a top-down view, or the
numbers of the pins closest to the surface of the circuit board. In any case, the
issue is a design fault and should have been noticed during checks.

There are few potential fixes for this issue. Perhaps the simplest method, the
expansion header could be de-soldered from the top of the prototype, and then
re-soldered onto the bottom side. There is some risk of damage in soldering, but
this is likely to be minimal.

Alternatively, it might be possible to use a solderless breadboard intermediary in
a manner comparable to a telephone switchboard. This is perfectly workable on
the proof-of-concept prototype side, as a 1 mm² solid conductor can easily be

Liam McSherry 258 of 304
EC1520839

inserted into both the expansion header and a breadboard. However, on the side
of the development kit, this fix is less workable. The development kit’s expansion
header is a set of pins, not receptacles, and so there cannot be attached any cable
without means of securing that cable in place. The development kit does include
so-called “breakout pads” (plated holes without components mounted in them), a
number of pins exposed by the expansion header are only available on surface
pads (rather than plated holes) located on the reverse of the development kit. It
may be possible to reroute certain functions to the additional connections made
available through the pads (pins PA12–14, PB9–10, PC7, PD8, PD13–14, PE0–3,
and PF8–9), but use of these breakout pads would require either that cables be
directly soldered to these pads, or that suitable receptacles be sourced and also
soldered to the pads.

While direct soldering of cables to the pads would be the fastest method, risk of
damage is increased relative to the use of a standard plastic receptacle. However,
it may not be possible to source a suitable receptacle in sufficient time. It may
also be the case that the required microcontroller functions (in particular, those
exposed on pins PC3–6, which are present on the reverse of the kit) cannot be
routed to the receptacles. If this is the case, full testing of the prototype may then
require the use of a single set of functions, reconnected as appropriate, to control
all aspects of the prototype. This would be relatively cumbersome, but would be
a preferable alternative to a complete inability to test the prototype.

Returning to the carrying out of action item 1, once the source of the issues was
known, the simple relocation of conductors to the suitable locations enabled the
bare fan connection to be tested.

Using the same equipment as on the 12th of January, a 12 V supply was connected
with a 3 V gate signal applied to pin 18 (instead of the pin 17 specified in the action
item). The measurements specified in action item 1E to 1G were not taken.

26th January 2018

The measurements specified in action item 1E to 1G were taken using the same
equipment as on the 12th of January. The supply voltages were set around 12 V
and 3.1 V. The results were as follows.

At TP6, a voltage of 120 mV was observed. When the supply voltage was 8 V and
not 12 V, this voltage decreased to 80 mV. These measurements are equivalent to
fan currents of 0.25 A and 0.16 A, the former being the expected value and the
rated current of the fan. While no predictions were made about the expected fan
current at lower voltages, this reading does give some insight—if the decrease in
fan current were linear, it would be expected that the ratio of voltages and the
ratio of currents would be equal. Instead, they are marginally different—the ratio
of 120 mV to 80 mV is 1.5, while 0.25 A to 0.16 A is 0.15625. This would indicate
that, as expected, a fan controlled by modulation of the supply is likely to require
some form of control loop rather than a simple “set and forget” system where the
voltage can be set and the speed can be assumed correct.

At TP2, the voltage was observed to be around 7.11 V. This is below the expected
maximum of 12.6 V, and around the fan rated starting voltage of 7 V. This is also
consistent with the value observed at TP1 during completion of action item 2.

At JP1 pin 10 (the output of the potential divider at the bare fan connection), the

Liam McSherry 259 of 304
EC1520839

voltage was observed to be 2.51–2.52 V. This is below the maximum of 2.6 V.

This action item is completed.

F7.2 Basic verification: PWM DAC fan connection

19th January 2018

The proof-of-concept prototype was connected to a 12 V supply and a 3 V (rather
than a 3.3 V) supply, and Fan 1A was connected to the PWM DAC fan connection,
designated JP3, in the manner specified in action item 2.

The equipment in use was the same as that used on the 12th of January in carrying
out action item 1. Adjustments were made as appropriate to account for the issue
of the connections to the expansion header being incorrect. Specifically, ground
connections were instead made at pins 2 and 20, and the gate signal was applied
on pin 4 (rather than pin 3).

The fan was observed to start and continue to rotate, as expected.

The voltage at TP5 more than 1 second after starting was observed as 1.4 V, not
the 0.1 V that was expected. TP5 is the output from the current transducer. As the
op-amp was not powered during this test, it is unlikely that this output can be
assigned any meaning. It is possible that the op-amp could have been powered
through its inputs, but it is unlikely that the voltage through these inputs would be
sufficient to ensure reliable operation. The action item has been updated to
include a step for connecting a 3.3 V supply.

If, after the op-amp is connected to the supply, a similar reading is produced, it
will be necessary to undertake further investigation. Texas Instruments IN180A2
devices have a fixed gain of 50, and so—at the 0.25 A stated on the face of the
fan—the voltage dropped across the 10 milliohm current-sense resistor should be
around (0.25 amp) × (10 milliohm) = 2.5 millivolt which, multiplied by the gain,
would result in an op-amp output of 125 millivolt. If the op-amp output remained
at 1.4 volts, this would indicate that around 28 millivolts was dropped across the
current-sense resistor, equivalent to a fan current of 2.8 A (well above the 1.5 A
standard maximum for a fan). In this scenario, it would be necessary to confirm
the true current drawn by the fan by measurement. However, other than at the
supply screw terminal, the connection of an ammeter may be problematic. The
ammeter, required in series with the fan, would need to be attached to the header
by clips, which may be too large to attach to one pin of the fan header without
coming into contact with another.

Otherwise, the voltages observed at TP1, TP4, and TP7 were within expected
ranges. The voltage at TP1 was observed at approximately 7 volts (the starting
voltage for the fan), and the voltages at TP4 and TP7 were observed as equal to
the supply voltage (which would not normally exceed 12.6 volts).

The measurement specified in action item 2G was not taken.

26th January 2018

The measurement specified in action item 2G was taken, and the measurement
in action item 2E was repeated with the op-amps powered.

Liam McSherry 260 of 304
EC1520839

The supplies were configured for approximately 12 V and 3 V. A voltage of 64 mV
was observed at TP6, equivalent to a current of 128 mA. This differs from the fan
rated current, and the current measured in carrying out action item 1E, of 0.25 A.
The reasons for this are not clear, and no decrease in fan speed was visible during
operation. More precise measurement of fan speed could be made, if desired.

At JP1 pin 6 (the output of the potential divider at the PWM DAC fan connection),
the voltage was observed to be 2.502 V. This is below the maximum of 2.6 V.

This action item is completed.

F7.3 Basic verification: MCU PWM DAC control mode

19th January 2018

A preliminary test relating to the function of the PWM DAC was carried out. The
microcontroller was not used as the basic verification in action items 1 and 2 had
not yet been completed, and so it could not be guaranteed that the connection of
the microcontroller was safe (primarily in terms of risk of damage to property).

The equipment in use was the same as that used on the 12th of January in carrying
out action item 1. Adjustments were made, as appropriate, to account for the issue
of the incorrect connections to the expansion header.

The proof-of-concept prototype was connected to a 12 V supply, and Fan 1A was
connected to the PWM DAC fan connection.

For a first measurement of the signal from the tachometer, the prototype was also
connected to a constant 3 V (instead of 3.3 V) supply. Measuring the output of the
fan tachometer with an oscilloscope, there was observed to be a period of around
12 milliseconds between the positive edges of each pulse, giving a frequency of
approximately 83⅓ Hz, equivalent to 2500 rpm—reasonably close to the rated
fan speed of 2350 rpm.

Subsequent measurements of the tachometer signal were made with a function
generator connected to the gate of the PWM DAC driver MOSFET M1. To drive
M1, the function generator was configured to produce a square wave with a peak-
to-peak amplitude of 6 volts, and a zero-volt D.C. offset. Photographs of the fan’s
tachometer output, as captured by an oscilloscope, are shown for each of the
measurements made with M1 driven by the function generator.

Liam McSherry 261 of 304
EC1520839

Operation at 30 Hz

Operation at 25 kHz

As was expected at especially low frequency, the impact on the tachometer signal
is significant. While a 30 Hz driver frequency was never a possibility, it was
believed that the gathering of data at multiple, highly varying frequencies would
allow for better analysis of any waveforms.

At 25 kHz, a recognisable square wave is present on the output. Although noise is
present, especially at the very end of each negative edge, it may be the case that
this noise is introduced by the probe (especially given its consistency). No careful
selection of probes was made, and so the probes in use may be somewhat unsuited
for measuring these signals.

A further test was attempted at 100 kHz—the planned operating frequency of the
PWM DAC driver—but, at this frequency, the connected fan failed to start. At
slightly lower frequencies, the fan would start again. Moving gradually from the
starting frequency of 100 kHz to 0 Hz, the fan was visually observed to change
speed. The probable cause of this behaviour was revealed when the output of the

Liam McSherry 262 of 304
EC1520839

function generator was probed.

Signal generator output at 84.74 kHz.

At an output frequency of 84.74 kHz (a frequency below 100 kHz around which
the fan began to rotate again), the supposed square wave produced by the signal
generator was extremely distorted. As can clearly be seen, the waveform does not
even vaguely resemble a square wave.

The issue of the connected fan not starting at 100.5 kHz likely stems from the
effect such a distorted signal would have on the PWM DAC. The PWM DAC, if it
functions correctly, should produce an output voltage roughly equivalent to the
supply voltage multiplied by the duty cycle of the driver. That is, for a 10 V supply
and an 80% duty cycle, an output of around 8 V would be expected. The effective
duty cycle of this distorted signal, if it were sufficiently low and if the PWM DAC
were to function even somewhat correctly, could result in a voltage below the fan
starting voltage being produced. In particular, if the 55% duty cycle estimated by
the oscilloscope were correct, the PWM DAC output could be near 6.6 volts.

If the distortion in the signal generator output increased with frequency, the
added distortion at 100.5 kHz may have resulted in a lower still duty cycle and,
as a result, a lower still output voltage. At 84.74 kHz, the approximately 6.6 volts
may have been just close enough to the starting voltage for the fan to start. Indeed,
performance at 84.74 kHz was severely reduced—the period between fan
tachometer pulses was around 43 ms, equivalent to 23¼ Hz or nearly 700 rpm.
This speed is only marginally different from the upper bound of the standard
minimum fan speed for a 4-pin PWM-controlled fan, which is specified as 30%
or less.

For reference, 30% of the 2350 rpm maximum fan speed is 705 rpm. If this is not
a coincidence, it would indicate that the fan was operating at or near its minimum
fan speed, and so that the fan was supplied at or just above its starting voltage, as
would be expected when the PWM DAC is driven with a duty cycle of 55%.

Although no firm conclusions can be drawn from this experiment, the results are
useful and can aid in the carrying out of future experiments. Firstly, the results
appear to show that the PWM DAC is somewhat functional—the speed of the fan

Liam McSherry 263 of 304
EC1520839

was around what would be expected at the starting voltage of the fan, and the
duty cycle reported by the oscilloscope was around that which would be expected
to produce a voltage near the fan’s starting voltage.

Secondly, the results revealed that the function generator that was in use may not
be reliable. While it is possible that the generator in use was faulty, if others of
the same type are unable to produce well-formed square waves they are unlikely
to be useful. The generator, an Aim-TTi TG330, does include symmetry control,
which is equivalent to duty cycle control. That symmetry and duty cycle control
were equivalent was not known during the experiment, and so no test of this
functionality could be made. However, the function generator manual specifies
that ratios from 10:1 to 1:10 can be set, and so it is possible that performance could
improve if symmetry were enabled. If performance cannot be improved, the only
practical solution (other than the use of another function generator) is to use the
PWM generators from the microcontroller as drivers.

26th January 2018

As no computer was available, a deviation from action item 3 was made. The
development kit was powered by a CR2032 button cell, and the development kit
power source select switch set to “BAT.” The multimeter and oscilloscope in use
were those used on the 12th of January in carrying out action item 1.

The multimeter was connected across the positive terminal of the cell and a
ground exposed as one of the development kit’s breakout pads, and a voltage of
the expected magnitude, around 3 volts, was observed. The microcontroller was
also observed to start, with the text “IDLE” becoming visible on the LCD on the
development kit.

Using the menu presented through the development kit LCD, the microcontroller
was configured for the first mode of operation in the program specification (that
mode being one where the PWM DAC is driven). The oscilloscope probe ground
clip was attached to the shield of the USB micro-AB port on the development kit,
and the probe manually held against pin 3 (PC0) of the expansion header (ensuring
that no contact with other pins was made).

No output was observed on the expansion header pin. The breakout pad labelled
PC0 was probed to confirm that this observation was not the result of operator
error, and no output was observed. To determine whether the wrong pin had been
probed, each of the pins on the expansion header was probed, and again no
output was observed. The breakout pads were not probed in this manner, as the
header pins and the pads largely expose the same connections (with the breakout
pads exposing a small number of additional connections).

A fault in the probe was ruled out by two factors—first, that the oscilloscope was
registering 50 Hz noise produced by mains wiring; and second, that the probe
passed a probe check performed by the oscilloscope. The same probe had also
been used earlier in carrying out action items 1, 2, and 7. One possibility is that
the USB port was not grounded, although section 6.8 (p. 114) of the USB 2.0
specification states that “the shield must be terminated to the connector plug,”
and that “the shield and chassis are bonded together.” It would then be reasonable
to expect that a connection to circuit ground is present. This could not be verified
as a continuity test would risk damage to the microcontroller.

Liam McSherry 264 of 304
EC1520839

The simplest possibility is that the firmware was incorrect—that, while firmware
routines were correct, it did not configure the microcontroller output and so the
output of the peripherals was never transmitted to the microcontroller pins. If this
is the case, a simple addition to the firmware is likely to be all that is required to
fix the issue.

28th January 2018

In order to determine whether the firmware was at fault in producing the result
observed on the 26th of January, the example code included with Silicon Labs’
application note AN0014 (2017) was reviewed. This application note, covering the
timers included with EFM32 microcontrollers, includes an example detailing how
to produce PWM output with the timers.

The example code, in the file main_timer_pwm.c, carried out the same actions
as the prototype firmware, with one exception. In the main function, the example
configures a microcontroller pin (PD1) for push–pull mode.5 The example code
also enables timer 0 capture/compare channel 0 output at location 3.6

From the EFM32WG990 datasheet (2014, p. 69), it can be seen that location 3 for
timer 0 CC channel 0 is pin PD1. This indicates, as confirmed by the EFM32WG
reference manual (2014, p. 760), that the peripheral must be configured to output
on a specified pin, and that pin must also be configured for output. This latter
step is not done by the proof-of-concept prototype firmware, and so this is the
most likely explanation for no output being observed.

1st February 2018

The development kit was connected to a laptop and configured to operate in the
first mode in the program specification so that the action item might be carried
out. The equipment in use was the same as that used on the 1st of February in
carrying out action item 8.

The breakout pad PC0 was probed, and no voltage was observed. In probing all
breakout pads, a high voltage was observed on PB9 and PB10 (the pins connected
to the development kit pushbuttons). To confirm that the code for setting the pin
output level was functioning correctly, a test program which only set PC0 high
was written, tested, and observed to work correctly.

On rereview of the code for the firmware, it was discovered that the code which
configured the microcontroller PWM generators had not been enabled. The code
was enabled and the test reperformed.

A constant high voltage was observed at PC0. As the control modes start in the
100% duty cycle mode, this is the expected output. On actuating pushbutton 1 to
switch to the next duty cycle variant, it was observed that the indicator message
on the development kit LCD did not change until the pushbutton was actuated a
second time. Subsequently, on probing PC0, a constant high voltage was present

5 A mode where the output pin is connected to both logic-high and logic-low voltage rails
by oppositely-doped transistors driven by a single base or gate signal. Thus, when the gate
signal is present, on transistor is switched on and the other switched off, allowing control of
whether the output is at logic high or low.
6 To clarify, EFM32 microcontrollers include reroutable IO, and so a signal from a single
peripheral can be routed to up to 7 output pins, numbered 0–6 and called “locations.”

Liam McSherry 265 of 304
EC1520839

when the 60% duty cycle mode was indicated, and a PWM waveform when the
100% duty cycle mode was indicated. This desynchronisation between indication
and output is likely related to the issue where a second actuation was required for
a change in indicator to occur. The PWM waveform is shown below.

Microcontroller PWM output, first program mode.

As can be seen, the waveform produced has a 40 μs period and is held high for
around 25.2 μs, giving a duty cycle of approximately 63%. While this duty cycle is
largely correct—the output being expected to have a 60% duty—the frequency is
not. Rather than the 100 kHz specified in the action item, the observed period
gives the waveform a frequency of 25 kHz. While these may appear to be vastly
different frequencies, 25 kHz is one of the two frequencies which are to be output
by the microcontroller in the control modes, and so this points to an error in the
configuration of the timers.

The first step taken in troubleshooting this was to adjust the divisor provided to
a call to the CMU_ClockDivSet function in the setup portion of the state-handling
code for the control mode. This divisor was adjusted from 1 to 4 and the output
from the microcontroller probed, with no change observed. This indicates that,
despite the documentation stating it will “set clock divisor/prescaler” (2017), the
function silently fails if instructed to set the TIMER1 prescaler. It may behave in
this way because the timer prescaler configuration is contained in a timer register
and not a clock management unit register, but no statement to this effect could
be found in documentation, and no timer library function (other than the
TIMER_Init function) enables the setting of the timer prescaler. To confirm this,
the prescaler setting in the TIMER0_CTRL register was manually adjusted, and the
test reperformed after manually adjusting the prescaler to 1.

Before reperforming the test, as further verification, the configuration data for
the timer was checked against equation 20.4 in the microcontroller reference
manual (2014, p. 533). It was confirmed that the configuration data would produce
the anticipated output frequencies.

The output observed at PC0 on reperforming the test is shown.

Liam McSherry 266 of 304
EC1520839

Microcontroller PWM output (corrected), first program mode.

It can now be seen that the output has a 10 μs period with 6 μs spent positive, and
so both the duty cycle (of 60%) and the frequency (of 100 kHz) are correct.

PB11 was probed and observed to be at 0 volts, as expected.

This action item is completed.

The issue discussed above where two actuations of the pushbutton were required
for the indicator to change, and where the wrong duty cycle was indicated, was,
on review of the relevant code, determined to be the result of the variable in the
code which kept track of state being assigned an incorrect value. In the code
dealing with transitions between duty cycle variants, the state is switched on. For
transition into the 60% duty variant, the current state must be the 100% duty
variant. It is thought that, absentmindedly, the semantics of this check were taken
as reversed (i.e. transitioning to, rather than from, 100% duty), and so the state
variable was assigned the wrong value. This was corrected and the code verified
to operate as intended. This issue did not affect the other control modes.

F7.4 Basic verification: MCU modulated supply control mode

26th January 2018

See the discussion for the 26th of January for action item 3. Equivalent actions
were taken, with equivalent results.

28th January 2018

See action item 3’s discussion for the 28th of January.

1st February 2018

See action item 3’s discussion for the 1st of February. The issues and fixes set out
for that action item also apply to this action item. This section discusses only the
testing carried out after the fixes were made.

The development kit was connected to a laptop and configured to operate in the
second mode in the program specification. The equipment in use was the same

Liam McSherry 267 of 304
EC1520839

as that used on the 1st of February in carrying out action item 8.

The breakout pad PD7 was probed, and a constant high voltage was observed in
the first duty cycle variant. Pushbutton 1 was actuated to switch the firmware into
the second variant, and the indicator on the development kit LCD was observed
to change accordingly. The following waveform was observed on probing PD7.

Microcontroller PWM output, second program mode.

As expected, a square wave of period 10 μs where the signal is positive for 6 μs,
giving a frequency of 100 kHz and a duty cycle of 60%. These are the values set
out in the action item and in the code for the firmware, respectively.

The output waveform observed here appears significantly noisier at its positive
and negative levels than the equivalent waveform observed in action item 3. The
presence of minor differences is to be expected—a difference timer is used here,
with different circuit paths and routing, and with different silicon. This is unlikely
to present any issues, but (not lining up with expectation) is notable.

At the breakout pad for PB12, a voltage of 0 V was observed.

This action is completed.

F7.5 Basic verification: MCU PWM control signal control mode

26th January 2018

See the discussion for the 26th of January for action item 3. Equivalent actions
were taken, with equivalent results.

28th January 2018

See action item 3’s discussion for the 28th of January.

1st February 2018

See action item 3’s discussion for the 1st of February. The issues and fixes set out
for that action item also apply to this action item. This section discusses only the
testing carried out after the fixes were made.

Liam McSherry 268 of 304
EC1520839

The development kit was connected to a laptop and configured to operate in the
third mode in the program specification. The equipment in use was that used in
carrying out action item 8.

A constant high voltage was observed at breakout pad PB12 on probing in the first
duty cycle variant. On the actuation of pushbutton 1, the indicator displayed on
the LCD on the development kit changed to indicate transition to the second duty
cycle variant. On probing PB12 again, the following waveform was observed.

Microcontroller PWM output, third program mode.

It can be seen that the square wave shown above has a period of 40 μs. Owing to
the shape of the wave, there was difficulty in determining the length of time the
signal was high. At approximately 30 μs (or 75%), the output is likely at or near the
desired 70% duty cycle.

The waveform is heavily distorted compared to those observed in carrying out
action items 3 and 4, but this is likely attributable to the use of the low-energy
timer—in working towards the aim of consuming less energy, it would not be
unreasonable to anticipate some degradation in quality.

At PD7, a constant high voltage was observed, as expected.

This action item is completed.

F7.6 Basic verification: MCU pulse counting

1st February 2018

The development kit was connected to a laptop and configured to operate in one
of the control modes set out in the program specification. As each control mode
uses the same code for pulse counting, the specific mode was not recorded. The
equipment was that used in carrying out action item 8 on the 1st of February.

In programming the microcontroller on the development kit with the firmware,
the code used for fan emulation was disabled. Accordingly, when placed in the
control mode, the speed reported on the LCD on the development kit was 0 rpm.

Liam McSherry 269 of 304
EC1520839

A function generator was configured to output a square wave with a frequency
around 106.7 Hz (equivalent to 3200 rpm). The wave was set to have a peak-to-
peak amplitude of 2.2 volts, with a D.C. offset of 400 mV. This brought the peak
voltage comfortably above the logic-high threshold of 2.1–2.3 V.7 The function
generator was connected to the development kit by contacting two probes with
the broken-out pads for ground and a pulse counter input.

No change in the reported speed was observed on the development kit LCD.

Silicon Labs’ application note AN0024 (2013) was reviewed, revealing that the
inputs to the pulse counters must be configured as inputs through the registers
for configuring GPIO, and that the microcontroller’s internal alternative function
routing also applies to inputs. Appropriate changes were made to the firmware,
and the microcontroller was programmed with the updated firmware.

The test was reperformed, with the following indication observed.

Microcontroller reporting speed with 106.7 Hz input.

The output shown—a reported fan speed of 3210 rpm—is as close a result as is
possible with the basic pulse-counting code in the firmware. The pulse counter
is read 60 times a minute and, as two pulses represent a full rotation, the speed is
the half the number of pulses multiplied by 60. Multiplication being commutative,
this is equivalent to the number of pulses multiplied by 30, and so each pulse will
represent an increment of 30 rpm. As 3200 rpm is not an integer multiple of 30,
and as the frequency is 106.7 Hz (i.e. closer to 107 Hz than 106 Hz), the reading
could be expected to vary between 3180 and 3210 rpm (the two nearest integer
multiples of 30), with 3210 rpm appearing more often than 3180. This behaviour
is what was observed.

While action item 6 called for use of a 78.33 Hz signal, that value was arbitrary. It
was more convenient, given that the function generator had no readout and the
oscilloscope readout precision was limited, to select 106.7 Hz. This choice also

7 The microcontroller datasheet (Silicon Labs, 2014, p. 19) specifies a logic-high threshold
voltage of 0.70×VDD. VDD is estimated as 3.0–3.3 V on the development kit, giving the values
used above.

Liam McSherry 270 of 304
EC1520839

provided confirmation, discussed above, of the behaviour anticipated for when a
non-integer tachometer frequency is present.

This action item is completed.

F7.7 Experimentation: Hall effect sensor PWM response

26th January 2018

As mentioned in the discussion for action item 3 for the 19th of January, it was
observed that the waveform produced by the function generator was severely
distorted under load. This appeared to result in a signal with relatively low duty
cycle, and so it was necessary to determine whether the function generator could
be used in testing the prototype. What was not known on the 19th of January was
that the function generator included a “symmetry” function, described by the data
sheet for the generator as enabling the varying of the mark–space ratio from 10:1
to 1:10, and what effect this would have on the apparently distorted waveform.
The function generator was configured to produce a ~100 kHz square wave, with
a peak-to-peak amplitude of 6 V, and was connected directly to an oscilloscope.
The symmetry function was enabled, and the function generator response at
three points over its range observed.

It was observed that the duty cycle of the signal changed as expected, but also
that the D.C. offset of the signal changed with the changing duty cycle. At 50%,
the wave was symmetrical around zero—that is, its maximum voltage was +3 V
and its minimum voltage −3 V. At 10% duty cycle, this became +5 V and −0.8 V.
When configured for 90% duty cycle, it became +0.8 V and −5 V. There is no risk
to the MOSFETs (which are rated for ±20 V gate-to-source), but does present a
practical problem in that, at higher duty cycles, the positive peak will not be great
enough to switch the MOSFET on. There is no risk to the gate resistor—its rated
resistance of 470 ohms means that, even at 6 volts positive, it would only dissipate
around 77 mW, well within its 125 mW rating. It is expected that this could be
corrected through application of the function generator’s variable D.C. offset
function, albeit at an increased time cost.

In order to carry out this action item, the proof-of-concept prototype was
connected to a 12 V supply, a 3 V supply, and a function generator as specified in
action item 7. The equipment used was the same as that used on the 12th of
January in carrying out action item 1.

The function generator was configured to produce a 25.12 kHz square wave, with
a peak-to-peak amplitude of around 6 volts, and a duty cycle near 50%. TP2 was
observed using an oscilloscope, and a waveform captured (shown below).

Liam McSherry 271 of 304
EC1520839

Tachometer output, supply modulated at 25.12 kHz.

As can be seen, some noise is present—in particular, at the positive and negative
levels on the waveform. There can also be seen a repeating pattern of noise, with
the same “shapes” repeated on the negative level every two pulses. This noise is
most likely noise inherent to the fan—firstly, the negative-level noise repeats
every two pulses, and a full rotation of the fan is represented by two pulses (and
so the same pattern is unlikely to repeat unless it results from the fan itself); and
secondly, noise which was largely the same was observed on the 19th of January
in carrying out action item 3.

While it could be the case that the noise is caused by modulation of the supply
and that the filter did not adequately “smooth” the supply voltage (which would
cause the same noise to appear in that test), this does not mesh with the behaviour
of the PWM DAC observed on the same day (where the fan ceased to run when
the duty cycle of the signal driving the MOSFET was in the region of the starting
voltage for the fan). At the same time, the fan connected to the circuit as it was
configured for the carrying out of this action item did not cease to run until the
duty cycle fell below around 42%. That is equivalent to an average voltage of 4.8 V,
but it may be the case that the 12 V absolute voltage enabled rotation after the
average fell below the rated starting voltage.

In part to determine the extent of the supply modulation on noise, and also in
order to confirm whether the theory that a higher supply modulation frequency
would reduce noise in the output (by reducing the length of each individual
period where the fan’s Hall effect sensor was deprived of current), a further test
was performed at 99.33 kHz (instead of the 25.12 kHz specified in the action
item). An image of the output in this configuration is given below.

Liam McSherry 272 of 304
EC1520839

Tachometer output, supply modulated at 99.33 kHz.

As can be seen, while the noise in the output has significantly increased, the basic
noise present in previous waveforms remains present and largely unchanged in
this waveform. This would appear to further confirm that the noise seen at the
negative level, and the more minor noise at the positive level, is inherent to the
fan, and so not an effect of the modulated supply.

This has promising implications for any final design—at a modulation frequency
of 25 kHz, the output of the tachometer appears usable, and so it may not be
necessary to include a PWM DAC in a final design. This in mind, the function
generator was again configured for 25 kHz operation so that the spike in voltage
at the negative level could be more closely examined. This spike is shown below.

Tachometer output (magnified), supply modulated at around 25 kHz.

The voltage spike shown in the middle of the above image was chosen from a
reading for the reason that it has a particularly large magnitude, and so is likely a
good indicator of the maximum spike which might occur (although there is likely
to be some variation between different fans). If a voltage spike is small enough, it

Liam McSherry 273 of 304
EC1520839

may be the case that no filtering is needed—the tachometer output is fed into a
level shifter, and so the spike would need to be sufficient for the level shifter to
operate for it to be transmitted to the microcontroller. The level shifter, a Texas
Instruments CD74HC4050, includes in its D.C. electrical specifications a listing
of the voltages considered high and low at 25 ºC, reproduced below.

Parameter Supply Minimum Typical Maximum

High Level Input Voltage

2.00 V 1.50 V — —

4.50 V 3.15V — —

6.00 V 4.20 V — —

Low Level Input Voltage

2.00 V — — 0.50 V

4.50 V — — 1.35 V

6.00 V — — 1.80 V

Although no value is given for the supply voltage of around 3 volts used here, the
values given for 2.00 V and 4.50 V can be considered. These values, considering
that the spike in the image could be as great as around 2.50 V, place the spike
either firmly in the high level region (with a 2.00 V supply) or in the unspecified
region between 1.35 V and 3.15 V (with a 4.50 V supply). Even considering the
smaller spikes in the image, the voltage could foreseeably reach 1.50 V, again
enough to be placed in the high level or unspecified region for the level shifter.

For this purpose, the unspecified region may be treated as the high level region.
As the output cannot be predicted, the worst-case scenario is that a high output
is produced each time. In any final design, then, the effect of these spikes must
be mitigated—the most correct solution likely being to use a transient voltage
suppression diode, although a potential divider which reduces voltage by a fixed
proportion could also be a practical solution if that proportion can be set such
that the output remains in the high level region even under reduced supply
voltage conditions.

This action item is completed.

1st February 2018

Additional minor work was done to determine whether the noise present on the
readings presented previously in this section was inherent to the fan. Connecting
the fan to a constant 12 V supply, the tachometer output was probed. Equipment
used to do this was the same as was used on the 1st of February in carrying out
action item 8.

The tachometer output observed did not include this noise, as can be seen in the
image provided in the discussion for the 1st of February for action item 9.

F7.8 Further verification: PWM DAC operation

1st February 2018

The proof-of-concept prototype was connected to a 12 V supply, a 3 V supply,
and a function generator configured to output a square wave with a peak-to-peak

Liam McSherry 274 of 304
EC1520839

amplitude of 2.5 V, where the negative level was approximately 400 mV. Precise
voltage control was not possible due to the nature of the function generator.

The equipment is use was a Black Star 3225MP multimeter, a Tektronix TDS 220
oscilloscope, a Feedback FG601 function generator, and two Thurlby Thandar
PL310 precision laboratory D.C. power supplies. This equipment is shown in the
photograph dated the 1st of February in Appendix F4.

The function generator was first configured for approximately 100.2 kHz. As no
control over duty cycle was supported, the waveform produced had a fixed duty
cycle of 50% (as confirmed by oscilloscope observation). In this configuration, a
voltage of around 11.8 V was observed at JP3—approximately equal to the supply
voltage. It is possible that the supply voltage–observed voltage difference was the
result of the method of measurement, as the multimeter had previously been
observed to produce inconsistent (and potentially highly variable) readings when
a firm connection was not made. In this case, measurement was taken by firmly
contacting the multimeter probes with the appropriate pins on JP3 and, while the
reported voltage was not varying, this factor should not be entirely discounted.

An equivalent measurement was performed with the function generator set to
output a square wave of equivalent amplitude at frequency 24.8 kHz, with the
same result—a voltage equal or near equal to the supply voltage was measured
across JP3.

In each case, the expected voltage measured across the 12 V and ground pins of
JP3 would be equal to the supply voltage multiplied by the duty cycle—with duty
of 50% and a 12 V supply, this would be a voltage of approximately 6 V—not, as
observed above, a voltage nearly equal to the supply. This would, at first, appear
to indicate that the PWM DAC was non-functional, despite the previous apparent
functioning observed on the 19th of January in carrying out action item 3. It is,
however, worth considering that the large impedance presented across JP3 by the
multimeter was likely not dissimilar to open-circuit conditions, under which
correct operation is unlikely (by virtue of the filter comprising two parts linked
by the load which are disconnected from each other when open-circuited). To
confirm this, the PWM DAC circuit was simulated as below.

In the first simulation, resistor R was set to 48 ohms to produce the 250 mA which
Fan 1A is rated to draw. In the second simulation, a resistance of 1 MOhm was

Liam McSherry 275 of 304
EC1520839

used to represent the high-impedance input to a multimeter. No datasheet for the
Black Star 3225MP could be found, and so this resistance is based on an example
value given in an application note published by Fluke (2007). A plot showing the
voltage across R in each simulation is shown.

The code used to draw the plot is given in Appendix C5.

As expected, the PWM DAC functions correctly for a resistance of 48 ohms—the
voltage of 7.25 V is 60.4% of 12 V, corresponding to the 60% duty cycle (although
a practical circuit is unlikely to be quite as closely corresponding).

Further, as predicted, the output voltage under high-impedance (and so effective
open-circuit) conditions does not vary from the supply after stabilisation.

In order to complete this action item, then, the test must be carried out with the
PWM DAC on-load. However, this action item cannot be completed until either
a function generator capable of variable duty cycle control is sourced, or until it
can be confirmed that the connection of the proof-of-concept prototype to the
development kit is safe.

8th February 2018

The proof-of-concept prototype was connected to a 12 V and a 3 V supply, and
Fan 1A was connected to JP4 to enable on-load testing. The equipment used was
the same as that used on the 1st of February.

An oscilloscope was connected to both supplies. Fan 1A was de-energised and the
waveforms displayed by the oscilloscope were observed. No obvious impact on
either supply was observed. It was determined that it would be safe to connect
the development kit to the proof-of-concept prototype to operate the MOSFETs.

In order to help determine whether the fan speed response behaviour observed
on the 19th of January in carrying out action item 3 was the result of the quality
of output produced by the function generator, the PWM DAC driver MOSFET

Liam McSherry 276 of 304
EC1520839

was first operated using the output of a function generator. The generator in use,
a Feedback FG601, was known to be capable only of producing an output wave
with a duty cycle of 50%. At approximately 25 kHz, the fan operated at visibly
reduced speed and a low whine could be heard coming from the fan. Probing the
exposed metal on the reverse of the fan connector, 12 V was observed across the
12 V and ground connections of the fan, and the output of the tachometer was
observed at 26.32 Hz (equivalent to around 790 rpm). Increasing the frequency
towards 100 kHz, the fan slowed to a near stop at 66 kHz. A low whine persisted
until the frequency was raised above 74 kHz. The fan did not begin to move again
at 100 kHz.

The PWM DAC was then driven at 100 kHz from the development kit. At duties
of 100% and 60%, the fan reported speeds of 2050 rpm and 1042 rpm—equal to
around 50.8% of the former speed. This gives further credibility to the suspicion
that the failure of the fan to operate at higher frequencies was related to the
quality of function generator output.

In testing at 25 kHz, driven from the low-energy timer, the fan did not start in the
first duty cycle variant (intended to be 100%). Reviewing the firmware, the timer
was configured to operate at 100% duty by setting its duty to one above the upper
bound value. This is valid with normal timers, but (as noted in Appendix F5.2) the
low-energy timers do not have special handling for this configuration. The fix
was simple, and involved setting the duty to the upper bound value. This may not
have been noticed in carrying out action item 5 as the constant 0 V and the
constant 3.3 V output would both appear as a constant straight line on the output
of an oscilloscope, with the only difference being their relative elevations (which
could be only a number of millimetres at larger scales).

The basic operation at 25 kHz and 100 kHz confirmed, the development kit was
cycled through a number of duty cycles at each frequency. The output from the
kit and the output from the tachometer were recorded, and are given below.

Expected Observed

Duty RPM

25 kHz 100 kHz

Tach. RPM Tach. RPM

100% 2350 rpm 68.49 Hz 2055 rpm

80% 1880 rpm 51.28 Hz 1538 rpm

70% 1645 rpm 47.62 Hz 1429 rpm

60% 1410 rpm 36.50 Hz 1095 rpm

40% 940 rpm 21.74 Hz 652 rpm

30% 705 rpm 25.00 Hz 750 rpm

20% 470 rpm 11.52 Hz 346 rpm

15% 353 rpm 0 Hz 0 rpm

While the speeds given in the table do not line up with the expected values, they
do line up if adjustments are made using a speed at 100% duty of 2055 rpm. When
operating at 80% duty, the 1538 rpm is around 75% of 2055 rpm, 1095 rpm 53%,

Liam McSherry 277 of 304
EC1520839

and 652 rpm just under 32%. The PWM DAC output was not expected to align
exactly with duty cycle, and had been observed in simulation to have a response
which varied with load, and so these 5–8% differences are not cause for concern.
It is also reasonable for the fan speed drop-off to accelerate the closer the output
voltage becomes to the starting voltage.

Operating at 25 kHz, the speeds reported more closely aligned with the adjusted
expected speeds: 1429 rpm is equivalent to 69.5%, 750 rpm 36.5%, and 346 rpm
16.8%. The precise reason for this is not known, but there may be a clue in the
somewhat lower operating current observed in carrying out action item 2 on the
26th of January—the property of inductors to oppose changes in current may
have greater effect at 100 kHz, where the faster switching speed could lead to
reduced time for current to increase before the driver MOSFET switched off.

It being confirmed that the fan speed would change in response to the PWM DAC
being driven with different duties, it was then necessary to investigate whether
the 12 V observed across the fan at 790 rpm was accurate. Jumper wires were
inserted into the fan connector and those wires connected to both a multimeter
and oscilloscope, as shown below.

Jumper wires inserted into the fan connector.

Liam McSherry 278 of 304
EC1520839

In this configuration, both Fans 1A and 2 were operated at 100 kHz and cycled
through a range of duties. At each duty, the voltage reported by the oscilloscope
and the multimeter were recorded. The results are given in the below table.

Duty

Fan 1A Fan 2

Oscilloscope Multimeter Oscilloscope Multimeter

100% 12.10 V 12.10 V 12.00 V 12.10 V

80% 9.12 V 9.18 V 8.90 V 9.03 V

60% 7.40 V 7.40 V 6.60 V 6.58 V

40% 6.50 V 6.53 V 4.40 V 4.45 V

15% 2.06 V 2.09 V 3.28 V 3.31 V

Note that, where a varying waveform was observed, the mean voltage is given in
the above table. The precision of the oscilloscope was limited by its display scale,
and so where the last fractional digit of an oscilloscope measurement is zero, this
has been added for formatting purposes.

These values are plotted below, with the “perfect” line being the product of the
supply voltage and the duty.

As can be seen, the responses generally approximate the perfect response. The
response for Fan 2 falls slightly below the response for Fan 1A, a factor in which
is likely the lower load presented Fan 2—a rated current of 60 mA instead of
250 mA—prompting an over-damped response, although the responses become
more aligned at higher duties (potentially indicating that other factors are at play).

Both responses become less consistent, and diverge from the perfect response to
a greater degree, at lower duties. Contrary to what could be expected, that the
lower voltage (and hence lower effective load) would produce an overdamped
response, both responses rise above the perfect response (where before, at higher
duties, they had generally been in line with or below it). The response for Fan 2

Liam McSherry 279 of 304
EC1520839

in particular appears to plateau between 40% and 15% duty cycles, which could
indicate that there exists a minimum voltage below which the PWM DAC cannot
produce a response that corresponds to its duty cycle input. This behaviour is not
observed with the response for Fan 1A, although—considering the variability that
was previously observed with changing load—this may be related to the different
currents drawn by the fans. The circuit was simulated (as on the 1st of February)
to determine whether this behaviour could be reproduced, but the output in the
simulation remained almost exactly linear with duty. It may be that the observed
behaviour is dependent on the non-ideal characteristics of the components.

Weight is added to the suspicion that a factor in this behaviour is the load on the
PWM DAC when the output waveforms are observed. The waveforms for each of
the fans at 40% are shown below.

PWM DAC output with Fan 2 at 40% duty.

PWM DAC output with Fan 1A at 40% duty.

Neither of these waveforms is entirely steady, but it can be seen that the second
waveform, for Fan 1A, is considerably less steady—varying between 3.84 and 7.52

Liam McSherry 280 of 304
EC1520839

volts, with a mean of 6.3 to 6.7 volts. The precise cause for this behaviour has not
been identified, and the wave does not appear to represent the charge–discharge
curve of an inductor. The peak-to-peak amplitude of the waveform of 3.76 volts
is also far greater than the predicted (by simulation) voltage ripple of 13 mV. One
possibility is that the change in inductance with frequency had a significant effect
on the output, but, in this scenario, it would be expected that the damping of the
response would change, rather than there being produced a waveform that does
not decay and is a consistent shape, as is seen in the image.

This waveform could be caused by the interaction of the PWM DAC capacitor
with the PWM DAC inductor, but only the rising edge of each pulse resembles a
capacitor charge–discharge curve. The falling edge does not represent the curve
for either a capacitor or inductor. This possibility is therefore less likely.

An interesting portion of the waveform is the final spike. It would make intuitive
sense for this to represent the switching off of the MOSFET—causing the initial
fall in voltage as the MOSFET falls out of conduction—and the operation of the
inductor, resulting in the voltage rising before the flyback diode operates (which
produces the fast falling edge). As can be seen in the image, this occurs over the
period of around 12 milliseconds—8 milliseconds while the voltage is falling but
before it spikes, 2 milliseconds where it is rising in the spike, and around 2 more
milliseconds where it sharply falls to its lowest point before a new pulse starts.

The decrease in the voltage, if it were caused by the inductor discharging into the
circuit in opposition to the supply, would be expected to occur far quicker—with
an inductance of 470 μH and a circuit resistance of 48 ohms (the resistance which
produces 250 mA at 12 V) plus 119 milliohms (the inductor inherent resistance), a
time constant of just under 10 microseconds would be expected. Instead, the time
for the decrease to occur is on the order of milliseconds. It is therefore unlikely
that the drop and subsequent spike are caused by the operation of the MOSFET
and the diode.

Ultimately, this great variability is not hugely important—it appears only to occur
at relatively low duty cycles and so relatively low voltages, where the fan would
not normally be operated. Using the perfect response, a duty cycle of 40% would
produce a voltage of 4.8 volts, well below the advertised fan starting voltage. Even
at the 6.5 volts seen in testing, the output remains below the starting voltage. If it
were possible given the time constraints, a next step would be to investigate the
response with varied capacitance and inductance in the circuit.

This action item is completed.

F7.9 Further verification: Modulated supply tachometer output

1st February 2018

The proof-of-concept prototype was connected to 12 V and 3 V supplies, and a
function generator configured to output a square wave of frequency 24.9 kHz
was connected to JP1 pin 17. Fan 1A was connected to JP4. The equipment used
was the same as that used on the 1st of February in carrying out action item 8.

At TP2, the expected output from the fan tachometer was observed.

At JP1 pin 4, the voltage was observed to not exceed the supply voltage. However,

Liam McSherry 281 of 304
EC1520839

a waveform equivalent to that observed at TP2 was not present. Instead, there
was observed a constant high voltage. To confirm this reading, the schematic
diagrams in Appendix F4 and the level shifter datasheet were reviewed, and the
level shifter pins probed directly. This confirmed the readings.

In troubleshooting, the tachometer pulse frequency being the cause of this issue
can be immediately eliminated. Each pulse produced by the tachometer lasts on
the order of milliseconds, while the “high-speed CMOS logic” 744050 in use is
specified as having rise and fall times not exceeding 1000 ns, propagation delay
not exceeding 130 ns, and transition times not exceeding 110 ns (Texas
Instruments, 2005, pp. 3-4). While no setup or hold times are given, even if the
maximum switching frequency had a period double that of the sum of the listed
times (that is, 2 × 2350 ns = 4.7 μs), that frequency would be 213 kHz—well above
the hundreds of Hertz that might be output by a fan tachometer. The tachometer
output recorded in the course of carrying out further work which related to action
item 7 was examined for further information (shown below).

Tachometer output when supplied with a constant 12 V.

The review of the device datasheet in carrying out action item 7 provided a clue
to the answer—in carrying out that action item, the minimum logic high voltages
had been compared to the magnitude of a spike in noise to evaluate whether the
spike might be registered as a tachometer pulse. These minimums depend on the
supply voltage, and are specified at 1.5 V, 3.15 V, and 4.2 V for supply at 2 V, 4.5 V,
and 6 V, respectively. Assuming the logic-high level changes linearly in the region
of unspecified supply voltages, and using the specified values to produce a linear
function VHIGH = 0.6735VS + 0.1439, logic-high at supply 3 V lies around 2.16 V.

The above image shows a peak-to-peak voltage of 10.2 V. Taken in isolation, this
could be interpreted as the tachometer output not reaching fully supply voltage,
but the oscilloscope was configured in D.C.-coupled mode, and so the offset of
the negative level from the vertical position arrow (visible at the very bottom and

Liam McSherry 282 of 304
EC1520839

right of the plot) reveals the true issue. As confirmed by a one-division separation
between the vertical position arrow and the negative level, the tachometer output
is alternating between approximately 12 V at its peak and 2 V at its trough.

This offset negative level, given that the logic-high voltage of the shifter is likely
to be slightly lower than the specified voltage, may not be sufficiently low for the
level shifter to register a logic low. If this is the case, and it appears likely, the
behaviour of the level shifter would be that observed—a continual logic high, with
no transition to logic low.

If this is the case, this issue could be fixed by any means which would sufficiently
reduce the voltage to below the logic-high voltage, the simplest solution likely
being the use of a potential divider. However, this has the potential to interfere
with the pull-up to 12 V, and so any potential divider would need to be selected
so as to present a higher resistance than the pull-up. This behaviour is also likely
to vary from one fan to another, and so investigation with Fan 2 is desirable.

A suitable test verifying the operation of the level shifter would be to manually
provide a signal, produced by a function generator and equivalent to what might
be produced by a fan tachometer, and observe the output.

8th February 2018

The proof-of-concept prototype was powered with 12 V and 3 V supplies. The
equipment used was the same as was used on the 1st of February in carrying out
action item 8.

A function generator configured to produce a square wave of frequency 100 Hz,
with peak-to-peak amplitude 11.6 volts and negative peak at 0 volts. An
oscilloscope was connected to JP1 pin 4 to enable observation of the output of
the level shifter. The function generator was connected directly to pin 5 (“2A”) of
the level shifter by contacting a probe to that pin. The output observed on
oscilloscope is shown below.

Level-shifted 100 Hz, 0–11.6 V square wave.

The sawtooth-like waveform shown, while not the expected output, is no cause
for concern on its own—a positive edge-triggered pulse counter should count a

Liam McSherry 283 of 304
EC1520839

pulse of this shape no worse than it would a square pulse.

However, while the wave shape is not concerning, the amplitude is—the wave in
the image has a peak-to-peak amplitude of 1.84 volts, offset from ground by 3.52
volts. Alternating between 3.52 and 5.36 volts, the signal would cause damage to
the microcontroller if it were connected. In troubleshooting, no reason for this
behaviour could be determined. The input wave had been confirmed to have the
correct amplitude and D.C. offset, and probing pin 1 (“VCC”) of the level shifter
confirmed that approximately 3 volts was present. Further, while the datasheet
only provides characteristics at 2, 4.5, and 6 volts, the device is specified for
operation at 2–6 volts, and the first page of the datasheet mentions the device’s
propagation delay at 5 volts. The specified output voltages, in each case listed,
were below the supply voltage (as would be expected).

The failure of the level shifter is not critical—if the cause of the issue cannot be
determined, another level shifter (or another method of level shifting) could be
employed instead.

Fan 2 was then connected to JP4 to enable observation of its tachometer output
for comparison with that observed for Fan 1A. The output of the tachometer at
TP1 was observed to vary between 0 and 12 volts, rather than the 2 and 12 volts
observed for Fan 1A. Any final design would therefore be unable to rely on any
specific offset from ground, but would nonetheless be required to reduce signal
levels to those usable by the level shifter.

This action item is completed.

F7.10 Further verification: fan speed control

8th February 2018

The firmware for the proof-of-concept prototype was modified such that the
third mode in the program specification (see section 14.4.3) would cycle between
duties of 100%, 70%, 30%, and 20%.

The proof-of-concept prototype was then connected to 12 V and 3 V supplies in
the manner specified in action item 10. The development kit was connected to
the prototype by jumper wires from its breakout pads, and Fan 1A to JP4. The
equipment in use was the same as used for action item 8 on the 1st of February.

On configuring the development kit to operate at 100% duty, the fan was visually
observed to be operating at a speed significantly slower than expected. The speed
was observed to increase when the development kit was cycled to 70% (the next
duty cycle), and observed to continue to increase through 30% and 20% duty. The
response of the fan therefore appeared to be inversely related to duty. Reviewing
the 4-wire PWM fan specification (Intel Corporation, 2005, p. 10), it is stated that
the fan controller must “provide an open-drain […] type output” (that is, an output
which provides a controlled connection to ground). Any period where the gate
for the PWM MOSFET is high, then, produces a low voltage on the fan side, and
so it would make sense for the fan-side duty cycle to be the period where PWM
MOSFET gate signal is low.

However, while this would make sense, whether this is the case is made less clear
by the same page in the specification stating that the “signal is not inverted, 100%

Liam McSherry 284 of 304
EC1520839

PWM results in Max fan speed.” If the signal were not inverted, 100% duty would
result in a constant connection to ground and so it would be expected that the fan
would operate at minimum speed. At the same time, this statement could be
interpreted as meaning the PWM “seen” by the fan—that is, the PWM produced
by conduction of the MOSFET rather than present on the MOSFET gate. If this
is the meaning, then 100% (fan-side) duty occurs at 0% MOSFET gate duty. Given
the observed behaviour of the fan, it is likely that this was the intended meaning,
and that (in implementing the firmware) this statement was misinterpreted.

This in mind, the test was reperformed and the tachometer output at each duty
was recorded. Adjusting for the inverse operation of the fan, it remains possible
to confirm correct operation. The results are given in the below table.

Duty Tachometer Inverted Duty Equivalent RPM

20% 58.82 Hz 80% 1765 rpm

30% 50.00 Hz 70% 1500 rpm

70% 23.36 Hz 30% 701 rpm

100% 23.15 Hz 0% 695 rpm

Keeping in mind that the speed of a fan need only correspond to duty cycle ±10%,
each of these results is within acceptable bounds (whether the maximum speed
is taken as the rated 2350 rpm or the 2055 rpm observed whilst carrying out
action item 8). As percentages of 2350 rpm, 1765 is 75.1%, 1500 is 63.8%, 701 is
29.8%, and 695 is 29.6%. If the maximum speed were taken as 2055 rpm, these
percentages would be 85.8%, 73%, 34%, and 33.8%.

The result for 0% inverted duty would appear to indicate that 2350 rpm is the
maximum speed, as each fan is required to have a minimum speed which is not
greater than 30% of its maximum.

In terms of corrections, all that must be done is to “invert” the duty values in the
code for the firmware. No further testing is considered necessary.

This action item is completed.

Liam McSherry
EC1520839

285 of 304

Appendix G
Ancillary prototypes

G1 USB prototype

G1.1 Hardware: overview 286

G1.2 Firmware: overview 286

G1.3 Firmware: discussion and remarks 288

G1.4 Software: overview 294

G1.5 Software: discussion and remarks 295

G2 Sensors prototype

G2.1 Overview . 298

G2.2 Temperature sensing 298

G2.3 Voltage and current sensing 301

286 of 304 Liam McSherry
 EC1520839

G1 USB prototype

The USB prototype has three core components—a hardware device supporting
communication over USB, firmware for that device which implements the device
class specification contained in Appendix D, and software which enables the host
computer to interface with the device and enables a user to instruct the device.

This appendix covers the design of the prototype.

G1.1 Hardware: overview
The hardware device to be used is the development kit used in other portions of
the project—a Silicon Labs EFM32WG-STK3800 development kit.

The microcontroller on the development kit includes a USB controller, and the
kit itself includes a micro-USB port which can be used in the kit’s connection to
the host computer. Documentation for the USB controller is contained in the
reference manual for the microcontroller, and in a number of application notes:

▪ AN0046 – USB Hardware Design Guide

▪ AN0052 – USB MSD1 Host Bootloader

▪ AN0065 – EFM32 as USB Device

▪ AN0801 – EFM32 as USB Host

▪ AN0820 – EFM32 USB Smart Card Reader

While not all of the application notes are directly relevant, the information in the
notes could be helpful in building an understanding of the controller.

Few other considerations can be made in relation to the hardware device. There
are no changes which can be made to its design, and nothing that is required to
be considered which would not fall under firmware or software.

G1.2 Firmware: overview

Microcontroller USB driver

The EFM32WG USB controller peripheral is relatively complex, with its control
done through a set of 83 registers. Fortunately, Silicon Labs provides a library for
basic control of the peripherals (called “emlib”),2 a set of kit-specific drivers and
a board support package, and “platform middleware” comparable to emlib but
with APIs for more specific applications.

In particular, the USB platform middleware includes firmware stacks for use as a
USB host and a USB device, as well as utilities common to both. This middleware
can therefore be used in the USB prototype.

1 Mass Storage Device (MSD), the name for the device class representing devices such as
memory sticks, portable hard drives, and SD cards.
2 “EM” being “Energy Micro,” a company acquired by Silicon Labs which designed the
EFM32 microcontrollers now sold by Silicon Labs.

Liam McSherry 287 of 304
EC1520839

USB identification

A USB device, as discussed in chapters 9.4 and 13.1 of the main body of the report,
must identify itself to its USB host using a Vendor and Product ID. A Vendor ID
can generally only be obtained by payment of a fee to USB-IF.

However, as also discussed, a number of USB licensees sublicense their ID, albeit
on conditions (such as an upper limit on unit sales, or use of a specific product
from the sub-licensor). One of these sub-licensors, John Otander (pid.codes), has
allocated a VID–PID pair for test use.

That VID–PID pair (VID 0x1209, PID 0x0001) is available for private test use on
the condition that it not be used on “any device that will be redistributed, sold, or
manufactured.” This pair can therefore be used in testing the USB prototype.

Integration with proof-of-concept firmware

Under the requirements specification set out in chapter 15.2 of the main body of
the report, the USB prototype firmware component is to be created, to the extent
practical, in such a manner as would enable integration of it with the firmware
produced for the proof-of-concept prototype.

It is expected that the most significant design consideration resulting from this is
the need to design the USB prototype firmware around the use of a periodic timer
rather than interrupts. That is, the firmware would need to be designed so as to
permit periodic checking of the USB controller peripheral, rather than the instant
reaction provided by interrupts.

It is likely to be the case, for example, that too long of a waiting period will result
in the operating system “timing out” the USB device and treating it if it had been
disconnected. For example, the Microsoft Windows USB Core Team have stated
at various points in a blog post (Microsoft Corporation, 2009) that a device will
be disconnected if it “times out,” albeit without any specific time period given. A
degree of trial and error is anticipated here, but—given that a USB device will be
polled at a maximum of 1000 Hz—a timer period of a handful of milliseconds is
likely to be sufficient.

Operating system-specific descriptors

As the above-referenced blog post mentions, the Microsoft Windows operating
system supports (and will request) a number of Windows-specific descriptors. In
chapter 11 of the main body of the report (which dealt with research relating to
the driver stack to be used), under “firmware considerations,” it was noted that
Windows supports the automatic loading of WinUSB on the connection of a USB
device. This is achieved by returning a particular Windows-specific descriptor.

If WinUSB is to be used—and it must be, as the alternative is the development of
a bespoke kernel mode driver, which would offer no advantage at significant cost
to time available—it is necessary for the USB prototype to respond with one of
these descriptors on interrogation.

These descriptors are set out in the Microsoft OS Descriptors Specification, of
which two versions exist: version 1.0 (2007), specified for Windows XP, Server
2003, Vista, and Server 2008 onwards; and 2.0 (2017), specified for Windows 8.1
and 10 onwards. In order to support the automatic loading of WinUSB, the v2.0

288 of 304 Liam McSherry
 EC1520839

specification must be used. Conformance with the v2.0 specification may require
the firmware to report that it implements USB version 2.1—the Binary Device
Object Store descriptor is specified as part of the USB 3.0 specification, which
requires that v2.1 be reported for “Enhanced SuperSpeed operating in one of the
USB 2.0 modes” (USB-IF, 2013, § 9.6.2). Confirmation of whether this is required
can be obtained by testing.

G1.3 Firmware: discussion and remarks

Microcontroller USB driver issues

As discussed in Appendix G1.2, Silicon Labs provides a driver enabling use of the
USB controller peripheral on its EFM32WG microcontrollers. Ostensibly, this is
utilised in a codebase by the typical method—for SiLabs’ Simplicity Studio IDE,3
through an “import” function which includes a link to driver source files provided
with the IDE. This link makes it so that the source files are logically present in a
codebase despite actually being somewhere else in the f ilesystem.

This import initially appeared successful, but on compilation an error with the
imported files was reported: usbconfig.h, a C header file the driver expects a
user to provide to describe the particular USB application, could not be found. A
simple error to fix, all that was required was that the relevant driver source files
be copied to a location with a usbconfig.h file. This is the fix that was applied,
and the error message did not appear on compilation.

On compiling after applying this fix, however, a large number of separate errors
were reported in em_usb.h, the top-level header for the driver which exposes
the definitions required to interact with the driver. In that header, errors stated
that the types uint8_t and uint16_t could not be resolved. This is not an issue
that would be expected, as these type names are standardised. Generally, this
would indicate that the correct header file—stdint.h—had not been included,
but including that header did not solve the issue. Examining the contents of that
header, the C macros __int8_t_defined and __int16_t_defined (which are
used to conditionally compile in code translating the compiler-defined types into
the standard types)4 were indicated as being undefined. Examining the contents
of the machine/_default_types.h header, however, appeared to indicate that
those symbols were defined, and so that the definitions should have been present
and compiled in. The reason for their not being compiled in is unclear.

For clarity, the IDE indicates lines which are conditionally compiled out with a
grey background, and code after #ifdef __int8_t_defined was greyed while
code defining that symbol was not.

The root cause of this issue not appearing readily fixable, an additional header
file masking stdint.h was added which included the definitions. This solves the
issue of the type definitions not being present, but not the underlying issue of the

3 Integrated Development Environment (IDE).
4 The C standard does not provide precise definitions of the sizes of integer types, instead
only requiring that each type be capable of storing a minimum range (BSI, 1999, pp. 21-22).
Although exact-width types are part of the standard, they are optional (p. 255). A compiler
will, because of this, generally rely on its internal type definitions to provide exact-width
integers (such as the 8-bit uint8_t and 16-bit uint16_t), rather than using standard C
types (such as char, short, int, and long, and long long).

Liam McSherry 289 of 304
EC1520839

conditional compilation symbols apparently being incorrectly evaluated.

At a later time, on compilation, the compiler began to report in em_usbd.h (the
header providing USB device-related definitions) that a number of types defined
by the driver could not be found. This was resolved by manually adding to the
driver’s source code an inclusion of the em_usbtypes.h header. It could not be
determined why this error suddenly appeared, but it is believed that it is likely
related to the above-discussed issue with incorrect evaluation.

General firmware architecture considerations

To be integrated with the proof-of-concept prototype firmware, the firmware for
the USB prototype would (as noted in Appendix G1.2) need to be designed around
the use of a periodic timer. While it would be possible to have the firmware work
without being so designed, a design based around a periodic timer where the start
of an operation is triggered by a timer pulse negates any concern relating to one
interrupt firing before the interrupt service routine for another has finished.

While the driver includes an interface for firmware to use the driver’s internal
timer (which is a microcontroller timer specified in usbconfig.h), the interface
is limited compared to direct use of a microcontroller timer. The driver-exposed
timer has a resolution of 1 ms, and must be restarted each time it expires. These
are not huge limitations, but must be taken into consideration.

In addition, the interface presented by the driver does not fit especially well with
firmware designed around a periodic timer—events (such as receiving a packet
from the USB host) are handled using callbacks, which are asynchronous with
respect to the periodic timer and so would not fit into the program flow of any
code handling the expiry of the periodic timer. It was initially considered that the
callback could handle only what is required for basic operation, storing remaining
state for code handling periodic timer expiry to retrieve and operate on, but this
is not viable as the callback is required to report its status before it yields. This in
mind, the next most practical method is likely to have the USB-interfacing code
and any fan-controlling code operate independently, with any shared state (such
as information about the current status of connected fans) protected by mutexes.
As the integration of the two codebases is outwith the scope of the project (and
likely not possible due to time constraints), these considerations minimally impact
the development of firmware for the USB prototype.

Operating system-specific descriptor retrieval

As mentioned in Appendix G1.2, the Microsoft Windows operating supports two
methods of retrieving its proprietary feature descriptors—version 1.0 or 2.0 of its
Microsoft OS Descriptors specification. These methods are conceptually similar,
but have important practical differences.

Each method uses a vendor-specific USB request, with the wIndex field set to
indicate which descriptor (or set of descriptors) is to be retrieved. As there are a
limited number of request codes, the request code for the request is specified in
another descriptor which is retrieved first. This avoids any risk of a device which
responds to a particular request code being harmed by an attempt to query for a
proprietary descriptor. For version 1.0, the request code (bMS_VendorCode) is
retrieved from a string descriptor at index 0xEE. Microsoft has stated this caused
devices which did not expect such a request to enter an indeterminate state, and

290 of 304 Liam McSherry
 EC1520839

so to require a reset before they would operate correctly (2017, p. 3). To avoid this
issue, version 2.0 uses the Binary Device Object Store (BOS).

The BOS is a “framework for describing and adding device-level capabilities to
the set of USB standard specifications” (USB-IF, 2013, § 9.6.2), and comprises a
header descriptor and a set of device capability descriptors. The header indicates
the total number of capabilities present, and each capability provides information
specific to its purpose—for example, the SUPERSPEED_USB descriptor informs a
host of whether a device supports operation at slower USB speeds. To enable use
by third parties, there is defined a PLATFORM descriptor, which includes a UUID5
specified by the third party (in this case, Microsoft) to indicate support for the
party’s particular extension to the USB protocol. As Microsoft’s compatibility
descriptor indicating that WinUSB should be used is part of version 2.0 of the
Microsoft OS Descriptors specification, use of the BOS is required, and use of the
BOS means that the device must support aspects of the USB 3.x specifications.

In particular, the device must be treated, for the purposes of the USB standard, as
an “Enhanced SuperSpeed” device operating in a USB 2.0 mode. The result of
this is that the device must indicate a USB version of 2.1 (0x0210) rather than a
version of 2.0 (0x0200) and provide USB 2.0 EXTENSION and SUPERSPEED_USB
descriptors in the BOS. As the microcontroller only supports operation in Low
and Full Speed modes (Silicon Labs, 2014, p. 240), it appears that the Link Power
Management protocol need not be implemented—the USB 3.1 specification states
that “an Enhanced SuperSpeed device […] shall support LPM when operating in
USB 2.0 High-Speed mode” (2013, § 9.6.2.1). It is necessary to confirm this by
observing the operating system’s behaviour immediately after device connection.

To gather information on operating system behaviour, the device was conf igured
to respond with the minimum required for enumeration and was connected to a
host computer. The host’s behaviour was observed to be the following sequence:

1. The host requested the device descriptor.

2. The host requested all configuration descriptors.

3. The host requested string descriptor 0xEE, which failed.

4. The host requested the device serial number.

5. The host requested the device’s list of supported languages.

6. The host requested the device qualifier descriptor, which failed.

7. The host declared enumeration complete.

8. The host requested the device product name.

This sequence is largely as would be expected, but provides confirmation—the
host will not attempt to retrieve BOS descriptors for a USB version of 2.0, which
means that a version of at least 2.1 must be reported. The failure to retrieve a
device qualifier descriptor is no cause for concern, as that descriptor is optional

5 Universally Unique Identifier (UUID), a 128-bit value generated in such a way as to make
the likelihood of another person generating the same UUID extremely unlikely. A UUID is
generally used where centralised registration is not desired (Leach, et al., 2005).

Liam McSherry 291 of 304
EC1520839

and included only if the device is operating at Full Speed but is capable of High-
Speed operation (or vice versa). Similarly, the request for string 0xEE is a request
for the string descriptor indicating support for version 1.0 of the Microsoft OS
Descriptors specification, and so its failure is not concerning.

The firmware was modified to report USB version 2.1, with other modifications
to the reported descriptors as appropriate, and the test reperformed. As would be
expected, the behaviour of the host was near-identical—the only difference in
behaviour was that, after the host requested all configuration descriptors, it also
requested the BOS descriptors. Before the protocol in Appendix D can be
implemented, then, all that is required is for the appropriate PLATFORM capability
be reported in the BOS, and the request specified in the Microsoft OS Descriptor
specification be implemented.

The firmware was modified to report the Microsoft PLATFORM capability, and to
include the Microsoft proprietary descriptor indicating WinUSB compatibility. A
simple program for the host was written to locate the USB device and indicate
success if the device was found. The device was connected to the host computer,
the host computer’s enumeration of the device observed, and the program started
and confirmed to locate the device. In doing this, a bug in the Microsoft Message
Analyser software may have been discovered—the device, when queried, would
provide USB 2.0 EXTENSION and SUPERSPEED_USB capability descriptors, but the
Message Analyser software would not indicate that the latter was present. The
descriptor was confirmed present using USBView, a utility which is part of the
Windows Driver Kit (WDK) and which lists the USB devices connected with any
descriptors reported for them.

This issue aside, and using both the Message Analyser and USBView to confirm
the presence of descriptors, an issue with the firmware was discovered. The BOS
PLATFORM capability defined by Microsoft includes a 4-byte operating system
identifier. The USB specification requires multibyte fields be transmitted in little-
endian format (i.e. least-significant byte first), but the operating system identifier
was being transmitted in big-endian order, resulting in the operating system not
querying for the Microsoft OS Descriptors. This issue resolved, the device was
connected and successfully registered as a WinUSB device (see below).

Before the simple program could be used as a test, it was necessary for the device
to report a device interface GUID6—an identifier representing a programming
interface exposed by a driver and consumed by other software, which enables
that other software to interact with a device through its driver. For example, a
device interface class may be used to provide an agnostic interface for multiple

6 Globally Unique Identifier (GUID) is another name for a UUID. Documentation provided
by Microsoft uses “GUID” rather than “UUID,” and so it is also used here.

292 of 304 Liam McSherry
 EC1520839

similar devices—Microsoft uses the example of three computer mice, connected
by USB, serial port, and infrared port, respectively, and each exposed by the same
device interface class (Microsoft Corporation, 2017).

The process for reporting a device interface GUID appears simple: in addition to
the compatibility descriptor for WinUSB, the device reports a registry property
descriptor with the name DeviceInterfaceGUID and value of that GUID. When
the device is configured by the operating system, that descriptor is retrieved and
the appropriate entry is added to the Windows registry. However, when added to
the set of descriptors reported by the device, the operating system failed to
recognise the device citing “an invalid Microsoft OS 2.0 descriptor set.” To test
whether the new descriptor was invalid, the WinUSB compatibility descriptor
was removed from the descriptor set and the device reconnected. The operating
system, without the compatibility descriptor, recognised the device and inserted
the appropriate value into the registry. This indicates that no issue exists with the
format of the registry property descriptor, but does not explain why the device is
not recognised with both descriptors. As an experiment, the order in which the
device sent the descriptors was switched—the registry property descriptor was
sent first, and the WinUSB compatibility descriptor second—and, in this order,
the operating system recognised and configured the device without error.

The simple program was then started and, as can be seen below, was successfully
able to access the USB device.

Accessing the USB device now possible, the next step is the implementation of
the protocol set out in Appendix D.

Implementation of the Appendix D protocol

This section deals with implementation of the Appendix D protocol in firmware,
and is mirrored by a section with the same title in Appendix G1.5.

The simplest portion of the Appendix D protocol to implement is the descriptor
setting out the configuration of the fan controller—which simply lists how many
fans the controller supports and the version number of the specification to which
the controller conforms—and so is the obvious starting point for implementation.
The descriptor is eight bytes long, and is to be included with the configuration
descriptors returned by the USB device. For the sake of simplicity, the device will
report that it supports the control of one fan, and that it implements protocol
version 0.11. On the firmware side, this was simple—all that was needed was to
add the appropriate bytes to the array containing the configuration descriptors,
and to update the wTotalLength value reported. This second step was initially
overlooked, resulting in the new descriptor not being registered, but could easily
and quickly be corrected.

This completed, the remaining aspect of the Appendix D protocol to implement
is the set of USB requests a fan controller must support. Three requests are set

Liam McSherry 293 of 304
EC1520839

out in Appendix D—one to retrieve fan identification and status information, one
to set the fan configuration, and one to retrieve that configuration. The first being
the simplest request, it makes sense to implement it first. As the microcontroller
will not be connected to real fans, spoofed values will be returned here. To aid in
verifying correct operation of the software, the current value will be varied on
each request. Excepting this aspect, the implementation is very simple, and would
consist only of a request handler which responded with a pre-set array. On testing
this code, the software reported currents of 35584, 35840, 36096, and 36352 mA.
Inspecting the data sent in the USB response revealed that the bytes of the field
containing the current were swapped—instead of [0x8C, 0x00] (140 with little-
endian byte ordering), the bytes were [0x00, 0x8C] (little-endian 35840).

The source of this issue was identified as the code for varying the current
reported between requests, which used a uint16_t* (pointer to a 16-bit unsigned
integer) to access the two uint8_ts (unsigned 8-bit integers). As C integer literals
are given in big-endian order but represented at the byte level (when compiling
for the ARM Cortex-M4) in little-endian order, it is believed that some confusion
occurred in writing the big-endian literal 0x8C00 (where 8C is the first byte
encountered reading left-to-right but is the second byte in terms of bit order) and
reconciling this with writing a multibyte field as little endian in a byte array,
where 8C is both the first byte read and the first byte in terms of bit order. A swap
in the byte order in the literal from 0x8C00 to 0x008C corrected the issue.

With GET_FAN_ID implemented, the next request is SET_FAN_MODE. This request
is used by the host to instruct the fan controller in its control of fans, either with
direct operation (specifying that a fan is to be operated at a particular voltage or
speed) or indirect operation (specifying a number of voltages or fan speeds with
associated temperatures, where the fan is to be operated at a specified voltage or
speed based on the current temperature). As there is no real fan to be controlled,
the implementation in firmware here need only verify the correctness of the data
and store it. While Appendix D requires a fan controller to retain its mode and
the associated mode data, there is little to be gained in testing from implementing
this aspect of the protocol, and so this requirement has not been met.

In the interest of brevity, and as the code for each mode would be generally the
same, only support for SET_FAN_MODE requests with voltage data is implemented.

In this demonstrative prototype, the code for handling the request is only part of
what would be required in a real application. The code performs a sanity check
on the length and verifies that the provided data is voltage mode data (reporting
an error if it is speed mode data). The data is then read into a buffer and its
correctness verified. If the data is valid, the device reports success (and otherwise
reports an error). Real-world code would, at this point, convert the mode data
into any internal representation (such as one better enabling translation of
temperature to a voltage than a simple linear search through an array), measure
the current temperature, and configure fans as specified in the mode data.

To provide an indicator of success, the current-reporting code was modified such
that, after configuration, the current reported by the device would cycle through
each temperature value specified in the configuration data.

On testing the firmware, the software reported that fan configuration had failed,
and the periodically-updating display of reported current stopped updating. The

294 of 304 Liam McSherry
 EC1520839

test was repeated with a breakpoint set at the start of the function responsible for
handling SET_FAN_MODE requests, enabling the direct observation of the contents
of the USB device’s memory. Observing the device’s memory, it became apparent
that either the host was not sending the correct data, or that the device was not
receiving the correct data—using the parameters 5V@10C and 10V@20C, the array
containing the data read by the device contained decimal 160 as its first value, a
number of zero bytes, then decimal 8. While the byte pair decimal 160:0 would
be valid, its value is not what would be expected (a first byte of 20) and the values
of subsequent bytes are neither valid (none containing a set END bit) nor what
would be expected (being all zero). To narrow the source of the issue down, the
software was stepped through and the contents of the buffer sent to the device
inspected immediately before transmission. The buffer contained correct values,
hexadecimal 14:6A:29:D4, appearing to indicate that the issue was with the host.

To investigate further on the device, a breakpoint was placed inside the callback
provided to the USBD_Read function and a trace of USB activity was started on
the host. Reperforming the test, the cause of the issue was almost immediately
clear—the trace reported no data for the transfer, which prompted a closer look
at the request, revealing that the software was sending an IN (device-to-host)
request rather than an OUT (host-to-device) request. This issue was corrected in
the software and the test reperformed, confirming correct function.

All that remains after the SET_FAN_MODE request is implemented is to implement
GET_FAN_MODE which, in this demonstrative prototype, consists only of a copy of
the buffer into which SET_FAN_MODE’s data was read. In a real-world application,
where a memory-constrained microcontroller might not have sufficient RAM to
keep a redundant copy of the data, the handler for this request may convert an
internal representation to the on-the-wire format required. The code to handle
this request was implemented, and worked without issue.

The firmware portion of the USB prototype is completed.

G1.4 Software: overview

Host driver stack

As discussed above and in chapter 11 of the main body of the report, WinUSB is
to be used as the driver stack on the host computer. WinUSB provides the kernel-
mode portion of a device driver, exposing a generic USB communications API
and leaving to the user-mode portion the implementation of a USB protocol. The
user-mode portion is provided by the device hardware vendor.

WinUSB is exposed directly through the Windows API, the use of which would
require either the use of the C programming language or an external binding in
another programming language. While use in this way is certainly possible, the
priority in this case is the rapid development of a suitable prototype. It would
therefore be preferable to use a managed language with a managed abstraction
over the WinUSB C API.

Fortunately, such an abstraction is provided by the Universal Windows Platform
in its Windows.Devices.Usb namespace. This abstraction enables the use of the
C# programming language which, being managed and with an extensive standard
library, is likely to enable or at least aid the speedy development of a prototype.

Liam McSherry 295 of 304
EC1520839

On the software side, use of the abstraction (and, presumably, WinUSB) requires
knowledge of information which can identify the device. It would appear, from
the documentation provided by Microsoft, that the Vendor and Product IDs are
sufficient. If this is not sufficient, the abstraction exposes a number of other
possible methods of identification—by device class, subclass, and protocol, or by
use of a device class GUID.

G1.5 Software: discussion and remarks

Implementation of the Appendix D protocol

This section deals with implementation of the Appendix D protocol in software,
and is mirrored by a section with the same title in Appendix G1.3.

As discussed in that appendix, the obvious starting point for implementation is
the reporting by the USB device of the fan controller configuration descriptor. As
the Windows.Devices.Usb library exposes the raw descriptors reported by the
USB device, all that is required is for the software to parse the descriptor, verify
its contents, and assign the reported values as appropriate. There was a slight
complication in that the library is intended for use with the Universal Windows
Platform (and so did not use typical C# types), and so the use of a helper library
with the necessary conversion functions was required, but otherwise no issues
were encountered. Moving forward, interfacing with the controller will be via an
abstracting FanController class, and the information retrieved from descriptors
and queries (here, the information being the number of supported fans) will be
exposed through properties and methods as appropriate.

As further discussed in that appendix, a sensible next step in implementation is
implementing the GET_FAN_ID request. At a basic level, this is simple—a request
using the appropriate class-specific request code is issued to the device, which
returns eight bytes of information for the software to parse. This is complicated
slightly by implementing this as part of an abstracting FanController class, and
so instead this class maintains a collection containing status information for each
fan. This collection is updated at the calling of an Update function by a user. Each
time the user requests an update, the class issues a request for status information
for each fan supported, parses this result, and updates the appropriate entry in
the list of fan statuses. To display basic status information, the software calls the
Update function in a loop, interprets and formats the updated information, and
outputs the formatted information to the display. This aspect of the software was
tested, and reported currents of 35584, 35840, 36096, and 36352 mA. Inspecting
the data sent in the USB response, this was determined to be an error in firmware,
and retesting after adjusting the firmware confirmed that the software correctly
displayed the current reported by the device.

The next request in the Appendix D protocol is the SET_FAN_MODE request, used
by the software to configure the fan controller and set how it is to control any fans
connected to it. Accordingly, it is necessary for the software to provide some
means for the user to specify desired settings, and so code was added to enable
input processing. As the software continually updates its command line output, it
is necessary for there to be a layer over the direct output which ensures that the
status display remains consistent even while the software is reporting user input
and the results of commands. The layer added in the software accomplishes this
by moving the command line cursor to the appropriate position, writing the

296 of 304 Liam McSherry
 EC1520839

message provided by the function’s caller, and returning the cursor to the position
expected by the portion of the software responsible for displaying the fan status
information. While the precise method used here would not be appropriate in
real-world software, it is a method that is relatively simple and fast to write code
for, and so is suitable for this task.

This layer was then used to define a simple command language consisting of a set
of space-separated atoms, where the first atom represented the command (such
as “SET” and “GET”) and subsequent atoms any parameters to those commands. A
parameter to the SET command consists of the setpoint (fan speed or fan voltage),
followed by an “at” sign, and further followed by the temperature at which the
controller is to manipulate the controlled quantity to the setpoint. For example,
a parameter indicating 10 volts at 40 ºC would be 10V@40C, a parameter which
indicates 95% speed at 80 ºC would be 95%@80C, and a parameter indicating a
desired speed of 1300 rpm at 50 ºC would be 1300rpm@50C. However, as each
mode would require generally similar code and for the sake of brevity, only the
code required to implement voltage-based control is present.

The code is not complicated—the command processor reads in a command with
a set of parameters, parses each parameter and categorises it based on the values
it specifies, and verifies those values. The values are then passed to a method of
the FanController class, which reperforms verification before serialising the
points and sending a request to the USB device. The code was tested to ensure
that the parsing and verification of parameters was correct (shown below).

The responses given indicate that the code is working correctly. The responses
of “fan configuration failed” were expected, as the relevant firmware had not, at
the time of testing, been implemented.

The commands shown in the image do not include a fan identifier. This would be
present in real-world software, and would only require the addition of code to
verify that the specified fan was one of those associated with the fan controller.
It has been omitted here for brevity.

Once the relevant portion of the firmware had been written, the software and the
firmware were tested together. As described in the discussion on the firmware, it

Liam McSherry 297 of 304
EC1520839

became apparent that an error existed—the data received by the microcontroller
bore no resemblance to that ostensibly sent by the software. Tracing a request, it
was noticed that the request was specified as an IN (device-to-host) transfer and
not an OUT (host-to-device) transfer. Reviewing the code for the software, this
was as a result of the USB SETUP packet being constructed incorrectly, and the
incorrect (but corresponding) method—SendControlInTransferAsync—being
called to initiate the transfer. These issues corrected, the test was reperformed,
and correct functioning of the software and firmware was confirmed.

With SET_FAN_MODE implemented, GET_FAN_MODE is the only request that
remains to be implemented. As noted in the firmware discussion, the request is
extremely simple (although the software is marginally more complicated than the
firmware). On the software side, the implementation requests the mode and must
deserialise it from the 2-byte entry format, checking the END bit for an indication
of the end of entries. The deserialised data is then returned as a set of points (in
the same way that a set of points was provided for SET_FAN_MODE) and these
points displayed to the user.

The software portion of the USB prototype is completed.

298 of 304 Liam McSherry
 EC1520839

G2 Sensors prototype

G2.1 Overview
A number of sensors are required for the fan controller to properly monitor and
control the fans connected to it—the fan controller must measure the speed of a
connected fan, the temperature of the environment, the voltage provided to the
fan, and the current drawn by the fan. This appendix considers measurement only
in the context of the proof-of-concept prototype, and deals with the practical
portions of measurement rather than the relevant theory.

The proof-of-concept prototype firmware, which was tested in Appendix F and
the code for which is contained in Appendix C3, includes an example of basic fan
speed measurement, and so fan speed measurement need not be addressed here.

Temperature measurement

The proof-of-concept prototype includes a I²C-connected NXP PCT2075 sensor
capable of providing ±1 ºC accuracy over a −25 ºC to +100 ºC range, making easy
the process of obtaining temperature measurement—firmware would need only
to configure the microcontroller I²C peripheral, send the sensor an appropriate
request, and convert the returned result into a usable format.

Voltage measurement

The voltage provided to a fan connected to the proof-of-concept prototype is
monitored by a largely direct connection from the supply line to an input of an
analogue-to-digital converter on the microcontroller, with the only components
between the two a 3.83:1 potential divider which reduces the 12 volts provided to
a fan to a level not exceeding 3.3 volts (a value falling within, and near the top end
of, the rated range of GPIO input voltages). The only processing required would
be the 3.83× multiplication of the ADC reading.

Current measurement

Despite current measurement being more involved than voltage measurement, it
ultimately requires largely similar configuration of the microcontroller—a sense
resistor is connected in series with the supply line, and an op-amp is connected
across this resistance to amplify the voltage dropped across the resistance to a
level suitable for measurement by a microcontroller ADC. In terms of processing,
firmware would only be required to apply Ohm’s law (compensating for the effect
of amplification) and divide the measured voltage by the known resistance.

G2.2 Temperature sensing

I²C initialisation

The vendor-provided emlib library includes functions for interfacing with the I²C
peripheral on the microcontroller, and so this can be used to communicate with
the temperature sensor. The peripheral is configured for use using the I2C_Init
function, but some prerequisite configuration is required before the peripheral
can be configured or used.

Both I²C peripherals are driven by the HFPER clock, and so must be enabled in
the CMU_HFPERCLKEN0 register as appropriate (either directly or through the

Liam McSherry 299 of 304
EC1520839

emlib-provided function CMU_ClockEnable). Once this clock has been enabled,
the peripheral’s clock generator can be configured as required. This generator, as
the microcontroller is the bus master, sets the clock rate for the I²C bus, and
cannot exceed the fastest speed supported by the slowest slave device—1 MHz in
this case, as the temperature sensor is the only slave and supports “Fast-mode
Plus” operation (NXP, 2017). The clock generator comprises a ¹⁄₁ to ¹⁄₂₅₅ prescaler
and a control for varying the bus clock pulse width (with three predefined ratios
of high periods to low periods, 4:4, 6:3, and 11:6, where the periods are the number
of divided HFPER cycles).

The values used to configure the clock generator depend on the frequency of the
driving clock (here, HFPER) and so vary from application to application. HFPER
is itself driven by HFCLK, which (to enable use of the USB peripheral) will be
operating at 48 MHz. The proof-of-concept prototype used a frequency of
14 MHz for HFPER, and so here HFPER is taken to be 12 MHz—the closest
frequency attainable when dividing from 48 MHz with the division grades
provided in the CMU_HFPERCLKDIV register. As there is no requirement for fast
data transfer, an easily attainable bus frequency of 10 kHz is suitable. Applying
equations 16.2 and 16.3 from the reference manual (Silicon Labs, 2014, p. 418), the
configuration values to be used are a clock ratio of 4:4 and a ¹⁄₁₇₄ prescaler. Using
the emlib I2C_Init function, a caller can provide a ratio and frequency and have
the library compute the appropriate configuration values.

With the I²C clock generator configured, the next step in initialisation is to enable
output from the peripheral to the microcontroller’s pins. Enabling output is a
two-part process—first, the relevant pins must be configured as wired-and7
outputs and inputs, as appropriate, through the microcontroller’s GPIO registers.
After this, the peripheral output must be routed8 and connected to the output
channel for the routed-to output. For the proof-of-concept prototype, the I²C
peripheral in use is I2C1, which has its input and output on expansion header
pins 7 and 9, which—according to the development kit manual—are connected
to pins PC4 and PC5 on the microcontroller. These pins are specified in the
EFM32WG990 datasheet as location 0 (Silicon Labs, 2013, p. 17; 2014, p. 66).

The GPIO configuration changes can be made using the emlib GPIO_PinModeSet
function, or by manually setting the GPIO_PC_MODEL[19:16] and [23:20] fields
to WIREDAND and INPUT, respectively. WIREDANDPULL and INPUTPULL modes are
available (and would use microcontroller-internal pull-up resistors) but, in this
case, external pull-up resistors are used, and so the internal pull-ups are not
required and, if enabled, could cause incorrect operation.

Peripheral output routing is controlled by the I2C1_ROUTE register, and requires
only that the location field I2C1_ROUTE[10:8] is set to location 0, and then that
the SCLPEN and SDAPEN fields are set to 1.

I²C communication

Emlib provides a pair of functions (I2C_TransferInit and I2C_Transfer) that

7 Wired-and is the terminology used in the reference manual for an open-drain output,
where the microcontroller would pull the signal to ground as required.
8 EFM32 microcontrollers include reroutable IO, and so a signal from a single peripheral
can be directed to up to 7 output pins, numbered 0–6 and called “locations.”

300 of 304 Liam McSherry
 EC1520839

enable managing an I²C transfer. The first of these functions handles the initiation
of a transfer, and takes as parameters the address of the I²C device, a pair of data
buffers, and a set of flags to modify the behaviour of the library. The I²C address
of the PCT2075 is 0x48 (0b1001 000), as the address is determined by the values
of pins A0 to A2 and as those pins are, on the proof-of-concept prototype, tied to
ground (NXP, 2017, p. 8). However, the documentation for emlib states that a 7-
bit I²C address must obey the AAAA AAAX format, where A is an address bit and X
is a “don’t care” bit. The value provided to emlib must therefore be 0x90 instead
of 0x48—equivalent to a bit-shift one position to the left. The remaining function
parameters—the pair of buffers and the flags—must be considered together, as
the flags affect how the library uses the buffers.

The flags describe four possible modes: reading data into the first buffer; writing
data from the first buffer; writing data from the first buffer and then reading into
the second buffer; and writing data from both buffers. The first two and the last
mode correspond exactly to I²C operations—an I²C request consists of a 7- or 10-
bit address plus a read/write (direction) bit, followed by data (from the master or
from a slave, depending on the value of the direction bit), and so a write–read
operation must consist of two requests. The last mode, a write–write operation,
uses a single request, and may be to enable writing more bytes than one uint16_t
can represent, as no length limitation exists with I²C (NXP, 2014, pp. 10, 15).

The temperature sensor protocol is relatively simple—a number of registers are
exposed, each assigned a 3-bit identifier, and each transaction with the device is
an I²C write to set the register in use followed either immediately by data to write
to the register or by a separate I²C read to retrieve the register value. Hence, the
firmware would generally use the write and write–read modes in communicating
with the sensor. To read the current temperature, the firmware would initiate a
write–read transaction with the write buffer containing 0x00 and the read buffer
being two bytes long.

Once the I2C_TransferInit function has been called, assuming that success is
indicated by that function’s return value, the firmware must wait for the transfer
to complete. This could be significant time—with the microcontroller operating
at 48 MHz and a 10 kHz bus frequency, the time taken to complete a write–read
to retrieve the measured temperature would be at least 20 bus cycles, or around
2 milliseconds. In that time, 96,000 microcontroller cycles would elapse. As such,
the firmware must repeatedly call the I2C_Transfer function to determine if the
transfer is complete. On completion, the read buffer contains the data returned
by the slave in response to the I²C read.

Temperature sensor reading processing

The temperature sensor returns its reading as an 11-bit two’s complement integer9
contained in the most significant bits of a 16-bit big-endian response. The value
of the reading is the temperature as a quantity of 0.125 ºC increments, and so
determining the temperature is a simple floating-point calculation: 0.125×N, with

9 Two’s complement, as an operation, involves bitwise-inverting a value and adding one to
the result. As a representation, two’s complement uses the complement of a number as its
negative representation—e.g. +3 is 0b011, and so −3 is ~0b011+1 = 0b100+1 = 0b101. This
enables circuit simplification, as A−B is equivalent to A'+B and so subtraction can be done
with an adder and inverter rather than a dedicated subtractor (Tan & Jiang, 2013, p. 412).

Liam McSherry 301 of 304
EC1520839

the value of N being the value returned by the sensor. Alternatively, if an even
simpler operation is desired and as noted by the sensor datasheet (p. 12), it would
only be necessary to read the most significant byte of the temperature register.
This results in 1.00 ºC resolution, obviating any need to perform a calculation.

G2.3 Voltage and current sensing

ADC initialisation

As with the I²C peripheral used in temperature sensing, Silicon Labs’ emlib library
provides functions for interfacing with the microcontroller’s analogue-to-digital
converters (ADCs), including an ADC_Init function to configure the peripheral
for use. Again, as with the I²C peripheral, configuration of the driving clock and
GPIOs is required before this initialisation function can be used.

The ADC is clocked by the High-Frequency Peripheral clock (HFPER), and so it
is necessary to enable the ADC in the CMU_HFPERCLKEN0 register. The ADC can
only operate between 32 kHz and 13 MHz, and so it would be necessary to further
divide HFPER using the prescaler in ADC0_CTRL if HFPER were operating at a
higher frequency. Assuming, as in Appendix G2.2, that HFPER had been divided
to 12 MHz, no further division would be necessary (unless, for example, reduced
power consumption was desired).

As the ADC takes external input, each pin in use must be configured to act as an
input. However, unlike other peripherals which can have their inputs and outputs
routed to one of multiple possible locations, each channel of the ADC has a single
location and the channel to use is selected instead. Configuration of a pin as an
input is largely the same between peripherals—the relevant 4-bit field in the
GPIO_Px_MODEL/H register for the particular port is set as necessary. In this case,
INPUT is likely the correct mode—the low output voltage from the op-amps (likely
in the low hundreds of millivolts) might not be sufficient to overcome the effect
of a pull-down to ground. As the selection of a channel must be done during
operation and not during configuration, it is not discussed here.

The ADC has variable resolution—it can both vary the number of discrete steps
between 0 volts and its reference voltage VREF, and the value represented by each
step. Lowering the number of steps provides coarser measurement, and enables
the ADC to measure at a higher rate; and adjusting VREF enables higher-precision
measurement at lower voltages (or differential voltages)—for example, an ADC
with 8-bit resolution and a 5 V reference measures in 20 mV steps, while the same
converter with a 1 V reference measures in 4 mV steps. Here, as speed is no great
concern, use of the full 12-bit resolution is suitable. Selecting a voltage reference
is more involved, and requires that the maximum reading be considered. Where
the ADC is reading from a current transducer, the maximum value that must be
read is (per chapter 14.3) not more than 1.65 V, meaning that the 2.5 V reference
is suitable. When the reading is from a voltage transducer, the 3.83:1 divider ratio
means that the maximum value is likely to be approximately 3.3 V—greater than
any fixed reference provided by the controller. However, a reference of 2×VDD is
permitted by the microcontroller, and would (for a 3.3 V supply voltage) provide
a more than adequate resolution of around 1.6 mV. Use of the 2×VDD reference
would require that the ADC occasionally sample VDD for use in calculation.

Additionally, the ADC has a configurable oversampling mode. When enabled, the

302 of 304 Liam McSherry
 EC1520839

input signal is sampled multiple times and then filtered to produce the result. As
both signals are expected to largely constant, and as the resolutions are 1.22 mA
and 1.61 mV, it is not anticipated that any great advantage would be derived from
oversampling. However, a level of oversampling could be used if desired.

The remaining configuration requires little consideration—the ADC requires an
amount of time to “warm up,” and can be kept warm to enable measurement at a
higher rate. While energy conservation is a factor in producing the fan controller,
shutting the ADC off between measurements is unlikely to save any significant
energy, and so there is no reason to not have the ADC continually kept warm. To
time the correct warm-up time, the ADC must be provided with the number of
HFPER cycles corresponding to at least 1 μs (referred to in vendor documentation
as the timebase). For a HFPER of 12 MHz, the timebase is 12 cycles (although the
clock frequency is not completely accurate, and so may fall below the nominal
frequency and may require that the timebase be adjusted upwards to account for
periods where the frequency falls below the nominal).

This configuration done, the ADC can be enabled for use.

ADC operation

The ADC has two modes of operation—single sample mode, which generates a
result from a single input; and scan, where the ADC iterates over a set of its inputs
and produces a result for each one. The ADC can operate, irrespective of mode,
in response to a trigger or continuously until stopped.

When operating in scan mode, the ADC samples the input, writes the result to the
ADCx_SCANDATA register, and sets a bit in the ADCx_STATUS register. A result, if it
is not read before the next result is written, is overwritten. This would initially
appear to require that the processor continually poll the status register, removing
any advantage gained from automatic sampling. However, the ADC can be used
with the Direct Memory Access (DMA) controller10 to autonomously copy each
scan result to memory before it is overwritten, avoiding any need to poll a status
register and simplifying code.

In the fan controller, the ADC is likely to be most useful in one-shot scan mode
with DMA to transfer results to memory. For firmware designed around a master
timer (such as the proof-of-concept prototype firmware), where each operation
must complete before the end of a slice of time and so where polling the status
register would not be viable (as there would be no guarantee that the check would
occur in time to retrieve the result before it is overwritten), this configuration
would enable better integration with the firmware. Further, as the ADC would be
triggered in accordance with firmware state and not either continually sampling
or triggered by an automatic timer, the consideration and code which would
otherwise be necessary for handling (for example) a filled DMA buffer would not
be required, as it could be ensured that the ADC is not triggered again before the
buffer was read and its contents processed. This could result in simplified code.

To further simplify code, it would be possible to sample both current and voltage
measurements in a single scan. Although this would require that current be taken

10 DMA enables a peripheral to access the microcontroller’s memory without intervention
from the microcontroller’s central processing unit (CPU), only involving the CPU when a
transfer completes and data is available for processing.

Liam McSherry 303 of 304
EC1520839

using the 2×VDD reference rather than the 2.5 V reference, the resolution lost as a
result of this change too insignificant to meaningfully effect measurement—with
the 2.5 V reference there would be a 1.22 mA resolution, compared to a resolution
of approximately 3.2 mA for 2×VDD if VDD is taken to be 3.3 volts.

ADC reading processing: general

As discussed, the ADC provides a reading as a value between 0 and its configured
resolution (here, 12 bits). Each step is equal to VREF divided by 2RESOLUTION, and so
some processing must be done to convert an ADC reading to an absolute value.

This processing is simple: the ADC reading is multiplied by VREF, and then divided
by 2RESOLUTION to give the measurement in volts. Care must be taken to ensure that
the calculation is performed using floating-point types, or that VREF is multiplied
by a suitable factor (such as ×1000 to give millivolts), so as to avoid inaccuracies
from integer division.

ADC reading processing: voltage transducer

As the only conditioning applied to the voltage signal is division to reduce it to a
safe measurement range, the measurement need only be multiplied by 3.83.

ADC reading processing: current transducer

The processing required to obtain a current value from the ADC measurement is
only complex by comparison to the processing required for output from the
voltage transducer. To obtain a current measurement, Ohm’s law must be applied
to find circuit current given a known resistance and the voltage dropped across
that resistance, and the result must be divided to account for op-amp gain.

With a known resistance of 10 milliohms and op-amp gain of 50, the formula for
computing current would be V⁄R × ¹⁄G = V⁄RG. Conveniently, this can be simplified to
a simple multiplication by a constant factor—10 milliohms is ¹⁄₁₀₀ ohms, which
becomes ⁵⁰⁄₁₀₀ (or ¹⁄₂) accounting for gain, and so the division is equivalent to
multiplying the ADC measurement by 2. If the firmware was in assembly rather
than C, this could be further simplified (for integer values) to a left bit-shift.

• END •

This report seeks to determine the theory behind the
control of typical computer fans and apply this in the
design and construction of a prototype for an electronic
programmable fan controller, and to then apply the
knowledge and observations gained in doing so to make
recommendations for a design for a fan controller
suitable for commercial and volume production.

	Abstract
	Acknowledgements
	Table of Partitions
	Table of Appendices
	Requirements Specification
	1. Brief
	1.1 Context
	1.2 Aim

	2. Requirements
	2.1 Hardware requirements
	2.2 Firmware requirements
	2.3 Software requirements

	3. Schedule
	3.1 Proposed schedule
	3.2 Actual schedule
	3.3 Progress log

	Research and Theory
	4. Summary of findings
	4.1 Hardware findings
	4.2 Firmware findings
	4.3 Software findings
	4.4 Standards and law
	The General Product Safety Regulations 2005
	The Electrical Equipment (Safety) Regulations 2016
	The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012
	The Electromagnetic Compatibility Regulations 2016
	The Ecodesign for Energy-Related Products Regulations 2010

	5. Computer fans
	5.1 Types
	5.2 Construction
	5.3 Control
	5.4 Monitoring
	5.5 Power requirements

	6. Pulse width modulation
	7. Form factor
	7.1 Expansion card slots
	7.2 2.5", 3.5", and 5.25" bays

	8. Power delivery
	8.1 Sources
	USB power
	SATA power
	PCI-E power
	Selection

	8.2 Fans
	Power supply margins
	Speed control by power delivery

	8.3 Microcontroller

	9. Host–controller interface
	9.1 PCI and PCI Express
	9.2 RS-232
	9.3 Ethernet
	9.4 USB

	10. Preliminary hardware selection
	10.1 Microcontroller
	10.2 PWM DAC
	General filter considerations and selection
	Snubber selection
	Control transistor

	11. Driver stack
	11.1 Driver fundamentals and stack selection
	11.2 Firmware considerations

	12. Control modes
	12.1 Voltage control
	12.2 Speed control
	12.3 Temperature point control

	13. Protocol
	13.1 Identification
	13.2 Communication
	Modes of communication
	Control transfer specifics

	Design and Implementation
	14. Proof-of-concept prototype
	14.1 Hardware selection
	Flyback diode
	Inductor
	Capacitor
	Tachometer interface
	Fan PWM interface
	Power connector
	Supply-monitoring transducers
	Temperature sensor
	Fan connector
	Expansion header

	14.2 Microcontroller connection
	14.3 Hardware design rationale
	MOSFET gate resistor
	PWM DAC voltage transducer
	Current-sense resistor
	MOSFET copper pours and stitched vias

	14.4 Firmware
	Program specification
	Design and source code
	Interrupt dependencies
	Clock dependencies
	Testing and verification

	15. Ancillary prototypes
	15.1 USB prototype
	General structure
	Requirements specification
	Design and source code
	Interrupt and clock dependencies

	15.2 Sensors prototype

	16. Production design
	16.1 Computer fans
	Speed control
	Monitoring: supply voltage and current
	Monitoring: fan functionality
	Monitoring: fan speed

	16.2 Form factor
	Physical dimensions: review
	Metal sled design

	16.3 Power delivery
	PCI-E 12 V supply
	USB 5 V supply
	Protection and control: general
	Protection and control: 12 V supply
	Protection and control: 5 V supply

	16.4 Host–controller interface
	16.5 Driver stack
	Windows.Devices.Usb
	Alternatives to Windows.Devices.Usb
	General architecture

	16.6 Protocol
	Flaws in the Appendix D protocol
	Architectural changes in the new protocol
	Specific changes in the new protocol

	16.7 Miscellaneous
	Firmware storage and upgradeability
	Microcontroller-autonomous fan monitoring, etc.
	Additional analogue-to-digital converter channels

	Conclusion and Review
	17. Critical evaluation
	17.1 Aim and objectives
	The technical knowledge objective
	The per-unit cost objective
	The schedule objective
	The development cost objective
	The documentation objective
	The test suite objective
	The design for manufacturing objective
	The standards compliance objective

	17.2 Hardware requirements
	17.3 Firmware requirements
	17.4 Software requirements

	18. References
	19. Figures
	20. Tables

	Appendix A Project schedule
	Appendix B Progress log
	2017
	September
	Thursday, 7th
	Friday, 8th
	Saturday, 9th
	Sunday, 10th
	Monday, 11th
	Tuesday, 12th
	Wednesday, 13th
	Thursday, 14th Week 1
	Friday, 15th
	Saturday, 16th
	Sunday, 17th
	Monday, 18th
	Tuesday, 19th
	Thursday, 21st Week 2
	Friday, 22nd
	Saturday, 23rd
	Sunday, 24th
	Monday, 25th
	Tuesday, 26th
	Wednesday, 27th
	Thursday, 28th Week 3
	Friday, 29th
	Saturday, 30th

	October
	Sunday, 1st
	Monday, 2nd
	Tuesday, 3rd
	Wednesday, 4th
	Thursday, 5th Week 4
	Friday, 6th
	Saturday, 7th
	Monday, 9th
	Tuesday, 10th
	Wednesday, 11th
	Thursday, 12th Week 5
	Friday, 13th
	Saturday, 14th
	Sunday, 15th
	Monday, 16th
	Tuesday, 17th
	Wednesday, 18th
	Thursday, 19th Week 6
	Friday, 20th
	Saturday, 21st
	Sunday, 22nd
	Monday, 23rd
	Tuesday, 24th
	Wednesday, 25th
	Thursday, 26th Week 7
	Friday, 27th
	Saturday, 28th
	Sunday, 29th
	Monday, 30th
	Tuesday, 31st

	November
	Wednesday, 1st
	Thursday, 2nd Week 8
	Friday, 3rd
	Saturday, 4th
	Sunday, 5th
	Monday, 6th
	Tuesday, 7th
	Wednesday, 8th
	Thursday, 9th Week 9
	Friday, 10th
	Saturday, 11th
	Sunday, 12th
	Monday, 13th
	Wednesday, 15th
	Thursday, 16th Week 10
	Friday, 17th
	Saturday, 18th
	Sunday, 19th
	Monday, 20th
	Tuesday, 21st
	Thursday, 23rd Week 11
	Friday, 24th
	Saturday, 25th
	Sunday, 26th
	Monday, 27th
	Tuesday, 28th
	Thursday, 30th Week 12

	December
	Friday, 1st
	Saturday, 2nd
	Sunday, 3rd
	Monday, 4th
	Tuesday, 5th
	Thursday, 7th Week 13
	Friday, 8th
	Saturday, 9th
	Sunday, 10th
	Monday, 11th
	Tuesday, 12th
	Thursday, 14th Week 14
	Friday, 15th
	Saturday, 16th
	Tuesday, 19th
	Wednesday, 20th
	Thursday, 21st Week 15
	Friday, 22nd
	Thursday, 28th Week 16
	Friday, 29th
	Saturday, 30th
	Sunday, 31st

	2018
	January
	Monday, 1st
	Tuesday, 2nd
	Thursday, 4th Week 17
	Friday, 5th
	Saturday, 6th
	Sunday, 7th
	Monday, 8th
	Tuesday, 9th
	Wednesday, 10th
	Thursday, 11th Week 18
	Friday, 12th
	Saturday, 13th
	Sunday, 14th
	Monday, 15th
	Tuesday, 16th
	Thursday, 18th Week 19
	Friday, 19th
	Saturday, 20th
	Sunday, 21st
	Monday, 22nd
	Tuesday, 23rd
	Wednesday, 24th
	Thursday, 25th Week 20
	Friday, 26th
	Saturday, 27th
	Sunday, 28th
	Monday, 29th
	Tuesday, 30th
	Wednesday, 31st

	February
	Thursday, 1st Week 21
	Friday, 2nd
	Saturday, 3rd
	Sunday, 4th
	Monday, 5th
	Tuesday, 6th
	Wednesday, 7th
	Thursday, 8th Week 22
	Friday, 9th
	Saturday, 10th
	Sunday, 11th
	Monday, 12th
	Tuesday, 13th
	Wednesday, 14th
	Thursday, 15th Week 23
	Friday, 16th
	Saturday, 17th
	Sunday, 18th
	Monday, 19th
	Tuesday, 20th
	Wednesday, 21st
	Thursday, 22nd Week 24
	Friday, 23rd
	Saturday, 24th
	Sunday, 25th
	Monday, 26th
	Tuesday, 27th
	Wednesday, 28th

	March
	Thursday, 1st Week 25
	Friday, 2nd
	Saturday, 3rd
	Sunday, 4th
	Monday, 5th
	Tuesday, 6th
	Wednesday, 7th
	Thursday, 8th Week 26
	Friday, 9th
	Saturday, 10th
	Sunday, 11th
	Monday, 12th
	Tuesday, 13th
	Wednesday, 14th
	Thursday, 15th Week 27
	Friday, 16th
	Saturday, 17th
	Sunday, 18th
	Monday, 19th
	Tuesday, 20th
	Wednesday, 21st
	Thursday, 22nd Week 28
	Friday, 23rd
	Sunday, 25th
	Monday, 26th
	Tuesday, 27th
	Wednesday, 28th
	Thursday, 29th Week 29
	Friday, 30th
	Saturday, 31st

	April
	Sunday, 1st
	Monday, 2nd
	Tuesday, 3rd
	Wednesday, 4th
	Thursday, 5th Week 30
	Friday, 6th
	Saturday, 7th
	Sunday, 8th
	Monday, 9th

	Appendix C Source Code
	C1 LC Filter Underdamped Response Plot
	C2 Proof-of-Concept Prototype Firmware
	main.c
	irq.c
	config.h
	states.h
	states.c

	C3 USB Prototype — Firmware
	main.c
	callbacks.c
	usbconfig.h

	C4 USB Prototype — Software
	Main.cs
	FanController.cs

	C5 PWM DAC High-Z Response Plot

	Appendix D Fan controller device class specification
	D1 Introduction
	D1.1 Scope
	D1.2 Related Documents
	D1.3 Terminology

	D2 Functional characteristics
	D2.1 Operational model
	D2.2 Interfaces
	D2.3 Descriptors
	D2.4 Requests
	D2.4.1 GET_FAN_ID (bRequest = 0)
	D2.4.2 SET_FAN_MODE (bRequest = 1)
	D2.4.3 GET_FAN_MODE (bRequest = 2)

	D3 Mode data format
	D3.1 Voltage control mode format
	D3.2 Speed control mode format

	Appendix E Summary of expenditure
	13th November 2017
	28th November 2017
	21st December 2017
	9th April 2018

	Appendix F Proof-of-concept prototype
	F1 Bill of Materials
	F2 Schematic Diagrams
	F3 Circuit Designs
	F4 Photographs
	F5 Firmware Design
	F5.1 Initial flowcharts
	Summary: first page
	Summary: second page

	F5.2 Specific considerations: fan speed measurement
	Measurable fan speeds
	Low-speed measurement accuracy
	Basic testing and verification

	F5.3 Specific considerations: microcontroller PWM generators
	Anatomy of the timers
	Normal timers
	Low-energy timers

	F6 Test Plan
	F6.1 General considerations
	F6.2 Equipment listing
	F6.3 Action items
	1 Basic verification: bare fan connection
	2 Basic verification: PWM DAC fan connection
	3 Basic verification: MCU PWM DAC control mode
	4 Basic verification: MCU modulated supply control mode
	5 Basic verification: MCU PWM control signal control mode
	6 Basic verification: MCU pulse counting
	7 Experimentation: Hall effect sensor PWM response
	8 Further verification: PWM DAC operation
	9 Further verification: Modulated supply tachometer output
	10 Further verification: fan speed control

	F6.4 Action items: notes

	F7 Test Results
	F7.1 Basic verification: bare fan connection
	12th January 2018
	18th January 2018
	19th January 2018
	26th January 2018

	F7.2 Basic verification: PWM DAC fan connection
	19th January 2018
	26th January 2018

	F7.3 Basic verification: MCU PWM DAC control mode
	19th January 2018
	26th January 2018
	28th January 2018
	1st February 2018

	F7.4 Basic verification: MCU modulated supply control mode
	26th January 2018
	28th January 2018
	1st February 2018

	F7.5 Basic verification: MCU PWM control signal control mode
	26th January 2018
	28th January 2018
	1st February 2018

	F7.6 Basic verification: MCU pulse counting
	1st February 2018

	F7.7 Experimentation: Hall effect sensor PWM response
	26th January 2018
	1st February 2018

	F7.8 Further verification: PWM DAC operation
	1st February 2018
	8th February 2018

	F7.9 Further verification: Modulated supply tachometer output
	1st February 2018
	8th February 2018

	F7.10 Further verification: fan speed control
	8th February 2018

	Appendix G Ancillary prototypes
	G1 USB prototype
	G1.1 Hardware: overview
	G1.2 Firmware: overview
	Microcontroller USB driver
	USB identification
	Integration with proof-of-concept firmware
	Operating system-specific descriptors

	G1.3 Firmware: discussion and remarks
	Microcontroller USB driver issues
	General firmware architecture considerations
	Operating system-specific descriptor retrieval
	Implementation of the Appendix D protocol

	G1.4 Software: overview
	Host driver stack

	G1.5 Software: discussion and remarks
	Implementation of the Appendix D protocol

	G2 Sensors prototype
	G2.1 Overview
	Temperature measurement
	Voltage measurement
	Current measurement

	G2.2 Temperature sensing
	I²C initialisation
	I²C communication
	Temperature sensor reading processing

	G2.3 Voltage and current sensing
	ADC initialisation
	ADC operation
	ADC reading processing: general
	ADC reading processing: voltage transducer
	ADC reading processing: current transducer

